
Simulations and Diagonalization

CS154
Chris Pollett

Apr 30, 2007.

Outline

• Finishing RAM by TM simulation
• Nondeterministic Turing Machines
• Universal Turing Machines
• Diagonalization

Simulating RAMs on TMs
Theorem If L is recognized by a RAM in time f(n)
then it is in TIME(O(f(n)3)).

Proof: Let P be a RAM program. We will simulate it by a seven tape machine. The first tape will be
used to hold the input string and it will never be overwritten. The second tape will be used to
represent the content of all the registers. This will be represented by a sequence of semicolon
separated pairs i, v. Here i says the register (which may be 0) and v says its value. When a register is
updated we copy the pair to the end of our sequence, update the value, then X over the old value. An
example sequence might be: 0, 101; XXX 1, 10; _

 The runtime for results comes because this tape can be shown to grow as O(f(n)2).
The states of M are split into m groups where m in the number of instructions in P. Each group
implements one instruction. Tape 3 is used to store the current program counter. This is initially 1. At
the start of the simulation tape 2 is initialize to the input configuration of a register machine based on
the contents of the input tape. Thereafter, at the start of simulating an instruction. The program
counter is read and the start state of the group of states of M for that instruction is entered. (see next
slide)

Proof Continued
An instruction is then processed, tape 2 is updated, and the

program counter on tape 3 is updated, then the next step
can be simulated and so on. Most instructions are
reasonably straightforward to carry out: To process an
instruction that uses indirect addressing of the form (j),
tape 4 is used to store the value k of the register j so that
we can then go access register k on tape 2. For operations
like Add and Sub, tapes 5 and 6 are used to store the
operands and tape 7 is used to compute the result. If the
RAM halts, the contents of register 0 (the accumulator) are
looked up on tape 2, and the TM accepts if the value is
positive.

Nondeterministic Turing
Machines

• Nondeterministic Turing Machines (NTMs) are defined by modifying
the transition function so that now it is a map:
δ: Q x Γ --> P(Q x Γ x(L, R)).
Here P(A) is the power set of A -- the set of all subsets of A.
For example, δ(q,a) ={(q’,c,L), (q,b,R})} would mean in state q reading an a we can

either write a c, move left and enter state q’ or we can stay in state q and write a b
and move right.

• A computation is a sequence of configurations (s, #x) :- (q1,w1av1) :- … :-
(qn,wnbvn) such that each follows the previous according to one of the
possible transitions given by the transition function. Due to the
nondeterminism there might be many legal computations each starting from
the same start configuration.

• The language of such a machine is the set of strings x such that there is a
computation on which it halts with a “accept” on x.

• A language L is in NTIME(f(n)), if there is a NTM, N, for L which for every
string x of length n and for every computation path of N on x, the machine
halts with either a “accept” or a “reject” in fewer than f(n) steps.

Simulation of Nondeterministic
Turing Machines

Theorem Any language decidable by an NTM is decidable by a 3-tape deterministic TM. Further, NTIME(f(n)) is
contained in ∪c>1TIME(cf(n)).

Proof: Let N be a NTM that recognizes some language. We will make a Turing Machine D to simulate N. The idea is to
have D try all possible branches of N’s computation. If D ever finds an accept state of N on any of the branches
then D accepts. So that we don’t get stuck on infinite branches we will do our simulation in an iterated deepening,
breadth first manner. D will have three tapes: the input tape, a simulation tape, and an address tape. D operates as
follows:

1. Initially the input tape has the input and the other two tapes are blank.
2. D copies the input tape to the simulation tape.
3. D then simulate N according to the nondeterministic choices on the address tape.
4. Let c be the finite maximum number of choices in any given state reading a given symbol for a next

state.
5. On the address tape we are going to write strings over the alphabet 0, 1, 2…, c-1, starting with the

empty string and proceeding in lexicographical order
6. If the address tape is blank, D checks to see if N immediately accepts. Otherwise, D writes a 0 on the

address tape and simulates N one step using the first possible nondeterministic choice. If this doesn’t
accept. Then D writes a 1, erases the simulation tape, and simulate N according to the second
nondeterministic choice. Once we have tried all single step computations, we then cycle over
computations of length 2, etc.

Notice the runtime of this algorithm to simulate f(n) steps is
O(1 + c + c2 + …+ cf(n)) = O(cf(n)+1) = O(cf(n)) so will be in TIME (cf(n)) by linear speed-up.

Universal Turing Machines

• We have previously shown that given an encoding of a CFG and an input
we can in cubic time (using CYK) determine if the string is accepted by the
grammar.

• It is thus natural to ask if there is a decision procedure for:
ATM={ <M,w> | M is a TM and M accepts w}

• There is a recognition procedure for this language:
U=“ On input <M,w>, where M is a TM and w is a string:
1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.”

• The above Turing Machine is called a Universal Turing Machine (a
UTM) because it can be used to simulate any other Turing machine.

• However, as U on a given input does not necessarily halt, it is not a decision
procedure for ATM.

• It turns out it is impossible to get a decision procedure for ATM.
• The next few slides work towards showing this.

