Notations for Automata Theory

CS154
Chris Pollett
Jan 29, 2007.

Outline

- Mathematical Notation and terminology
- Sets

Mathematical Notions and Terminology

- In order to begin learning about automata theory and computability we need to first fix some common notations based on sets as well as learn about various methods of proof.

Sets

- A set is a group of objects represented together as a unit. $\{7,21,57\}$-- the set containing the number $7,21,57$ $\{\},\{a\}$, apple $\}-$ the set containing the empty set, the set $\{\mathrm{a}\}$, and an apple.
- We use \in to mean element of and \notin to mean not element of. For example,

$$
7 \in\{7,21,57\}, 5 \notin\{7,21,57\}
$$

Subsets

- To make statements about sets we will often use abbreviations:
- We write \forall to mean "for all", write \exists to mean "exists", and we will write $\wedge, ~ v, \neg, \Rightarrow$ for "and", "or", "not", and "implies"
- As an example, consider the symbol \subseteq which means subset of. This can be expressed by saying $\mathrm{A} \subseteq \mathrm{B}$ means
$\forall \mathrm{x}(\mathrm{x} \in \mathrm{A} \Rightarrow \mathrm{x} \in \mathrm{B})$. "for all objects x, x is in A implies x is in B "
For example
$\{7,21\} \subseteq\{3,7,5,21,82\}$ since $7 \in\{3,7,5,21,82\}$ and $21 \in\{3,7$, 5, 21, 82\}
- We write $A=B$ to mean $A \subseteq B \wedge B \subseteq A$.
- We write $A \subset B(A$ is proper subset of $B)$ to mean $A \subseteq B \wedge \neg B \subseteq A$

More on sets

- Order of elements doesn't matter for sets: $\{1,5\}=\{5,1\}$
- Repetitions also don't matter:
$\{1,1,1,4,4,5\}=\{1,4,5\}$
- If we want repetitions to matter but still don't care about order then we have a multiset.
- To get a better grasp of how sets work, you might think about how you would implement them as a class in a computer language like Java.
- In the next few slides we will define operations on sets which would need to be implemented as methods.

Set comprehension and basic ways to make new sets

- The set which doesn't have any elements in it is called the empty set and is denoted by either $\}$ or \varnothing.
- To create new sets we will sometimes write
$\{x \mid P(x)\}$ which should be read as "the set of objects x such that property $\mathrm{P}(\mathrm{x})$ holds." (Sometimes this is called set comprehension)
- For example, given two sets A and B, we can:
- Take their union

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

- Take their intersection

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

- Take their difference

$$
A-B=\{x \mid x \in A \wedge x \notin B\}
$$

- If we have a universe, U, under consideration, then taking the difference with respect to this set is called taking a complement. $\overline{\mathrm{A}}=$ U\A.

Examples, Partitions, and DeMorgan's Laws

- Let $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{2,3\}$, then $\mathrm{A} \cup \mathrm{B}=\{1,2,3\}$, $\mathrm{A} \cap \mathrm{B}=\{2\}$. $\mathrm{A}-\mathrm{B}=\{1\}$.
- If $\mathrm{U}=\{1,2,3\}$, then $\overline{\mathrm{A}}=\{3\}$.
- Given two sets C and D if $\mathrm{C} \cap \mathrm{D}=\varnothing$. We say C and D are disjoint.
- Notice for any set $\mathrm{C}, \mathrm{C}=\overline{\overline{\mathrm{C}}}$.
- If S_{1}, \ldots, S_{n} are each subsets of S such that: (1) $S_{1} \cup S_{2} \ldots \cup S_{n}=S$, (2) for each i and $j, S_{i} \cap S_{j}=\varnothing$, and (3) for each $i, S_{i} \neq \varnothing$; then we call S_{1}, \ldots, S_{n} a partition of S.
- DeMorgan gave some useful relationships between the set creation operations we have defined so far. Namely, for any sets C and D , $\overline{\mathrm{C}} \cap \mathrm{D}=\overline{\mathrm{C}} \cup \overline{\mathrm{D}}$ and $\mathrm{C} \cup \mathrm{D}=\overline{\mathrm{C}} \cap \overline{\mathrm{D}}$

Cartesian Product and Relations

- Another useful way to create sets is to be able to create the set of ordered pairs from two sets A,B denoted: A x $B=\{(a, b) \mid a \in A \wedge b \in$ B\} .
- Here (a, b) abbreviates $\{a,\{a, b\}\}$.
- This operation is called Cartesian product.
- We can iterate it to make 3-tuples, 4-tuples, etc: $\mathrm{AxBxC}=\mathrm{Ax}(\mathrm{BxC})$, AxBxCxD , etc.
- If rather than use different sets we always use the same set, then we are taking the Cartesian power.
- We define $\mathrm{A}^{1}:=\mathrm{A}, \mathrm{A}^{\mathrm{n}+1}:=\mathrm{A}^{\mathrm{n}} \mathrm{xA}$.
- Given sets $A_{1}, A_{2} \ldots, A_{n}$ a subset $R \subseteq A_{1} x . . x_{n}$ is called an \mathbf{n}-ary relation. (For $\mathrm{n}=1$, unary relation; for $\mathrm{n}=2$, binary relation).
- For example, a graph is an ordered pair (V,E) where V is a set of vertices and E is a set of edges on V. An edge is a pair $(v, w) \in V x V$. So E is a binary relation.

Power Set

- Given a set A , we define its power set, 2^{A}, to be the set of all subsets of A. i.e., $2^{\mathrm{A}}:=$ $\{X \mid X \subseteq A\}$
- For example, if $A=\{a, b, c\}$, then 2^{A} is

$$
\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Successor sets

- Define $S(x):=x \cup\{x\}$.
- Notice $S(x)$ is a set with one more element than the set x. For instance:
$S(\varnothing)=\varnothing \cup\{\varnothing\}=\{\varnothing\}$,
$S(S(\varnothing))=S(\{\varnothing\})=\{\varnothing\} \cup\{\{\varnothing\}\}=\{\varnothing,\{\varnothing\}\}$, $S(S(S(\varnothing)))=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$, etc.
- As we will see we can use this successor operation to define the natural numbers.

Axiom of Infinity

- In a similar fashion to set comprehension, we will sometimes create new sets by believing in the existence of a set which satisfies some list of properties.
- For instance, the axiom of infinity says there is a set satisfying:

1. $\varnothing \in \mathbf{N}$
2. if $x \in \mathbf{N}$ then $\mathrm{S}(\mathrm{x}) \in \mathbf{N}$.

- You might ask yourself how exactly one could implement this axiom on a computer?
- The most important property of a set is what elements it contains.
- We could define a class InfiniteSet.
- Its constructor could take a Set of starting elements, start.
- InfiniteSet's isIn(x) method takes a Set x and returns whether it is in the instance of InfiniteSet or not.
- To do this, it first checks if if x is \varnothing or if $\mathrm{x} \in$ start.
- If not, it check is $x=S(y)$, for some y (this check is implementable if y is not too complicated). If not, then isIn(x) returns false.
- If yes, then isIn(x) returns the values of isIn(y).

The Set of Natural Numbers

- We can view the smallest set satisfying the axiom of infinity as the set of natural numbers, \mathbf{N}, if we interpret \varnothing to mean 0 and $\mathrm{S}(\mathrm{x})$ to mean $\mathrm{x}+1$.
- To make this smallest set we can take start $=\varnothing$, in our constructor of InfiniteSet from the last slide
- For two natural numbers x, y we say $x<y$ if $x \in y$.
- Notice we can define addition and multiplication on the natural numbers with rules:

1. $\mathrm{x}+0=\mathrm{x}$
2. $\mathrm{x} \cdot 0=0$
3. $x+S(y)=S(x+y)$
4. $x \cdot S(y)=x \cdot y+x$

- These rules give us algorithms for computing + and \cdot based on an algorithm for $S(x)$.

Functions

- A function is a binary relation $\mathrm{f} \subseteq \mathrm{DxR}$ such that each $x \in D$ occurs in exactly one pair $(x, y) \in f$.
- Rather than write $f \subseteq D x R$, we write $f: D->R$ to say f is a function or mapping from D (called the domain) to R (called the range).
- We write $f(a)=b$ to say that f maps the element a of D to b of R.
- For example, f: $\mathbf{N}->\mathbf{N}$, where $f(x)=x^{2}$ is a function.

Types of Functions

- A function is one-to-one (aka injective), if for every x, y in its domain $\mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y})$.
- For example, $f: \mathbf{N}->\mathbf{N}$, where $f(x)=2 x$ is injective.
- A function is onto (aka surjective), if for every y in its range there is some x in such that $f(x)=y$.
- For example, $\mathrm{f}: \mathbf{N}->\mathbf{N}, \mathrm{f}(\mathrm{x})=\lfloor\mathrm{x} / 2\rfloor$ is surjective.
- A function is a bijection if it is one-to-one and onto.

Size of sets

- A set is called finite if there is a bijection between it and some natural number.
- The cardinality (aka size) of a finite set $\mathrm{A},|\mathrm{A}|$, is the natural number it is bijective with.
- For example, consider f: $\{\mathrm{a}, \mathrm{b}\}-->\{\varnothing,\{\varnothing\}\}=\mathrm{S}(\mathrm{S}(\varnothing))=2$ defined by $f(a)=\varnothing$ and $f(b)=\{\varnothing\}$. This is a bijection and shows $\mid \mathrm{Al}=2$.
- We call a set countably infinite if there is a bijection between it and the set of natural numbers.
- We call a set uncountably infinite, if it is not finite and it is not countable infinite.

