Notations for Automata Theory

CS154 Chris Pollett Jan 29, 2007.

Outline

- Mathematical Notation and terminology
- Sets

Mathematical Notions and Terminology

• In order to begin learning about automata theory and computability we need to first fix some common notations based on sets as well as learn about various methods of proof.

Sets

- A set is a group of objects represented together as a unit.
 {7, 21, 57} -- the set containing the number 7, 21, 57
 { {}, {a}, apple} -- the set containing the empty set, the set {a}, and an apple.
- We use ∈ to mean element of and ∉ to mean not element of. For example,

 $7 \in \{7, 21, 57\}, 5 \notin \{7, 21, 57\}$

Subsets

- To make statements about sets we will often use abbreviations:
 - We write ∀ to mean "for all", write ∃ to mean "exists", and we will write \land , \lor , \neg , \Rightarrow for "and", "or", "not", and "implies"
- As an example, consider the symbol ⊆ which means subset of. This can be expressed by saying A ⊆ B means

 $\forall x \ (x \in A \Rightarrow x \in B)$. "for all objects x, x is in A implies x is in B"

For example

 $\{7, 21\} \subseteq \{3, 7, 5, 21, 82\}$ since $7 \in \{3, 7, 5, 21, 82\}$ and $21 \in \{3, 7, 5, 21, 82\}$

- We write A=B to mean $A \subseteq B \land B \subseteq A$.
- We write $A \subseteq B$ (A is **proper subset** of B) to mean $A \subseteq B \land \neg B \subseteq A$

More on sets

- Order of elements doesn't matter for sets:
 {1,5} = {5,1}
- Repetitions also don't matter: {1,1,1,4,4,5} = {1, 4, 5}
- If we want repetitions to matter but still don't care about order then we have a **multiset**.
- To get a better grasp of how sets work, you might think about how you would implement them as a class in a computer language like Java.
- In the next few slides we will define operations on sets which would need to be implemented as methods.

Set comprehension and basic ways to make new sets

- The set which doesn't have any elements in it is called the empty set and is denoted by either {} or Ø.
- To create new sets we will sometimes write

 {x | P(x) } which should be read as "the set of objects x such that property P(x) holds." (Sometimes this is called set comprehension)
- For example, given two sets A and B, we can:
 - Take their **union**

 $A \cup B = \{x \mid x \in A \ \lor x \in B\}$

– Take their **intersection**

 $A \cap B = \{x \mid x \in A \land x \in B\}$

– Take their **difference**

 $A - B = \{x \mid x \in A \land x \notin B\}$

• If we have a universe, U, under consideration, then taking the difference with respect to this set is called taking a **complement**. $\overline{A} = U \setminus A$.

Examples, Partitions, and DeMorgan's Laws

- Let $A = \{1,2\}$ and $B = \{2,3\}$, then $A \cup B = \{1, 2, 3\}$, $A \cap B = \{2\}$. $A B = \{1\}$.
- If $U = \{1, 2, 3\}$, then $\overline{A} = \{3\}$.
- Given two sets C and D if C ∩D= Ø. We say C and D are disjoint.
- Notice for any set C, $C = \overline{C}$.
- If $S_1, ..., S_n$ are each subsets of S such that: (1) $S_1 \cup S_2 ... \cup S_n = S$, (2) for each i and j, $S_i \cap S_j = \emptyset$, and (3) for each i, $S_i \neq \emptyset$; then we call $S_1, ..., S_n$ a **partition** of S.
- DeMorgan gave some useful relationships between the set creation <u>operations</u> we have defined so far. Namely, for any sets C and D, $C \cap D = \overline{C} \cup \overline{D}$ and $C \cup D = \overline{C} \cap \overline{D}$

Cartesian Product and Relations

- Another useful way to create sets is to be able to create the set of ordered pairs from two sets A,B denoted: A x B={(a,b) | a ∈ A ∧ b ∈ B}.
- Here (a,b) abbreviates {a, {a,b}}.
- This operation is called **Cartesian product**.
- We can iterate it to make 3-tuples, 4-tuples, etc: AxBxC = Ax(BxC), AxBxCxD, etc.
- If rather than use different sets we always use the same set, then we are taking the **Cartesian power**.
- We define $A^1 := A, A^{n+1} := A^n x A$.
- Given sets $A_1, A_2, ..., A_n$ a subset $R \subseteq A_1 x ... x A_n$ is called an **n-ary** relation. (For n=1, unary relation; for n=2, binary relation).
- For example, a graph is an ordered pair (V,E) where V is a set of vertices and E is a set of edges on V. An edge is a pair (v,w) ∈ VxV. So E is a binary relation.

Power Set

- Given a set A, we define its power set, 2^A, to be the set of all subsets of A. i.e., 2^A := {X | X ⊆ A}
- For example, if A={a,b,c}, then 2^A is
 {Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}

Successor sets

- Define $S(x) := x \cup \{x\}$.
- Notice S(x) is a set with one more element than the set x. For instance: S(Ø) = Ø U{Ø}={Ø}, S(S(Ø))=S({Ø})={Ø} U{{Ø}}={Ø}, S(S(Ø))=S({Ø})={Ø} U{{Ø}}={Ø}, {Ø}, S(S(S(Ø))) = {Ø}, {Ø}, {Ø}, {Ø}}, etc.
- As we will see we can use this successor operation to define the natural numbers.

Axiom of Infinity

- In a similar fashion to set comprehension, we will sometimes create new sets by believing in the existence of a set which satisfies some list of properties.
- For instance, the **axiom of infinity** says there is a set satisfying:

1. $\emptyset \in \mathbf{N}$

2. if $x \in N$ then $S(x) \in N$.

- You might ask yourself how exactly one could implement this axiom on a computer?
 - The most important property of a set is what elements it contains.
 - We could define a class InfiniteSet.
 - Its constructor could take a Set of starting elements, *start*.
 - InfiniteSet's isIn(x) method takes a Set x and returns whether it is in the instance of InfiniteSet or not.
 - To do this, it first checks if if x is \emptyset or if $x \in start$.
 - If not, it check is x=S(y), for some y (this check is implementable if y is not too complicated). If not, then isIn(x) returns false.
 - If yes, then isIn(x) returns the values of isIn(y).

The Set of Natural Numbers

- We can view the smallest set satisfying the axiom of infinity as the set of **natural numbers**, N, if we interpret Ø to mean 0 and S(x) to mean x+1.
- To make this smallest set we can take $start = \emptyset$, in our constructor of InfiniteSet from the last slide
- For two natural numbers x, y we say x < y if $x \in y$.
- Notice we can define addition and multiplication on the natural numbers with rules:
 - 1. x + 0 = x 1. $x \cdot 0 = 0$
 - 2. x + S(y) = S(x+y)2. $x \cdot S(y) = x \cdot y + x$
- These rules give us algorithms for computing + and \cdot based on an algorithm for S(x).

Functions

- A function is a binary relation $f \subseteq DxR$ such that each $x \in D$ occurs in exactly one pair $(x,y) \in f$.
- Rather than write f ⊆ DxR, we write f: D->R to say f is a function or mapping from D (called the domain) to R (called the range).
- We write f(a)=b to say that f maps the element a of D to b of R.
- For example, f: N -> N, where f(x) = x² is a function.

Types of Functions

- A function is **one-to-one** (aka **injective**), if for every x,y in its domain f(x)≠f(y).
- For example, f: $N \rightarrow N$, where f(x)=2x is injective.
- A function is **onto** (aka **surjective**), if for every y in its range there is some x in such that f(x)=y.
- For example, f: N -> N, $f(x) = \lfloor x/2 \rfloor$ is surjective.
- A function is a **bijection** if it is one-to-one and onto.

Size of sets

- A set is called **finite** if there is a bijection between it and some natural number.
- The **cardinality** (aka size) of a finite set A, IAI, is the natural number it is bijective with.
- For example, consider $f:\{a,b\} \rightarrow \{\emptyset,\{\emptyset\}\} = S(S(\emptyset)) = 2$ defined by $f(a) = \emptyset$ and $f(b) = \{\emptyset\}$. This is a bijection and shows |A| = 2.
- We call a set **countably infinite** if there is a bijection between it and the set of natural numbers.
- We call a set **uncountably infinite**, if it is not finite and it is not countable infinite.