
Notations for Automata Theory

CS154
Chris Pollett
Jan 29, 2007.

Outline

• Mathematical Notation and terminology
• Sets

Mathematical Notions and
Terminology

• In order to begin learning about automata
theory and computability we need to first
fix some common notations based on sets as
well as learn about various methods of
proof.

Sets

• A set is a group of objects represented together as a unit.
{7, 21, 57} -- the set containing the number 7, 21, 57
{ {}, {a}, apple} -- the set containing the empty set,

the set {a}, and an apple.
• We use ∈ to mean element of and ∉ to mean not element

of. For example,
7∈{7,21, 57}, 5 ∉{7,21, 57}

Subsets
• To make statements about sets we will often use abbreviations:

– We write ∀ to mean “for all”, write ∃ to mean “exists”, and we will write
∧, ∨, ¬, ⇒ for “and”, “or”, “not”, and “implies”

• As an example, consider the symbol ⊆ which means subset of. This
can be expressed by saying A ⊆ B means
∀x (x ∈ A ⇒ x ∈ B). “for all objects x, x is in A implies x is in B”
For example
{7, 21} ⊆ {3, 7, 5, 21, 82} since 7 ∈ {3, 7, 5, 21, 82} and 21 ∈ {3, 7,

5, 21, 82}
• We write A=B to mean A ⊆ B ∧ B ⊆ A.
• We write A ⊂ B (A is proper subset of B) to mean A ⊆ B ∧ ¬B ⊆ A

More on sets

• Order of elements doesn’t matter for sets:
{1,5} = {5,1}

• Repetitions also don’t matter:
{1,1,1,4,4,5} = {1, 4, 5}

• If we want repetitions to matter but still don’t care
about order then we have a multiset.

• To get a better grasp of how sets work, you might
think about how you would implement them as a
class in a computer language like Java.

• In the next few slides we will define operations on
sets which would need to be implemented as
methods.

Set comprehension and basic ways
to make new sets

• The set which doesn’t have any elements in it is called the empty set
and is denoted by either {} or ∅.

• To create new sets we will sometimes write
{x | P(x) } which should be read as “the set of objects x such that property

P(x) holds.” (Sometimes this is called set comprehension)
• For example, given two sets A and B, we can:

– Take their union
A∪B = {x | x ∈ A ∨ x ∈ B}

– Take their intersection
A∩B = {x | x ∈ A ∧ x ∈ B}

– Take their difference
A - B = {x | x ∈ A ∧ x ∉ B}

• If we have a universe, U, under consideration, then taking the
difference with respect to this set is called taking a complement. A =
U\A.

Examples, Partitions, and
DeMorgan’s Laws

• Let A={1,2} and B={2,3}, then A∪B= {1, 2, 3},
A∩B={2}. A-B= {1}.

• If U={1,2,3}, then A={3}.
• Given two sets C and D if C ∩D= ∅. We say C and D are

disjoint.

• Notice for any set C, C =  C.

• If S1,…, Sn are each subsets of S such that: (1) S1 ∪ S2 … ∪ Sn=S, (2)
for each i and j, Si ∩ Sj = ∅, and (3) for each i, Si ≠ ∅; then we call
S1,…, Sn a partition of S.

• DeMorgan gave some useful relationships between the set creation
operations we have defined so far. Namely, for any sets C and D,
C ∩D= C ∪ D and C ∪ D = C ∩ D

Cartesian Product and Relations
• Another useful way to create sets is to be able to create the set of

ordered pairs from two sets A,B denoted: A x B={(a,b) | a ∈ A ∧ b ∈
B} .

• Here (a,b) abbreviates {a, {a,b}}.
• This operation is called Cartesian product.
• We can iterate it to make 3-tuples, 4-tuples, etc: AxBxC = Ax(BxC),

AxBxCxD, etc.
• If rather than use different sets we always use the same set, then we are

taking the Cartesian power.
• We define A1 :=A, An+1 :=AnxA.
• Given sets A1,A2…,An a subset R ⊆ A1x..xAn is called an n-ary

relation. (For n=1, unary relation; for n=2, binary relation).
• For example, a graph is an ordered pair (V,E) where V is a set of

vertices and E is a set of edges on V. An edge is a pair (v,w) ∈ VxV.
So E is a binary relation.

Power Set

• Given a set A, we define its power set, 2A,
to be the set of all subsets of A. i.e., 2A :=
{X | X ⊆ A}

• For example, if A={a,b,c}, then 2A is
{∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}

Successor sets

• Define S(x):= x ∪{x}.
• Notice S(x) is a set with one more element than the set x.

For instance:
S(∅) = ∅ ∪{∅}={∅},
S(S(∅))=S({∅})= {∅} ∪{{∅}}= {∅, {∅}},
S(S(S(∅))) = {∅, {∅}, {∅, {∅}}}, etc.

• As we will see we can use this successor operation to
define the natural numbers.

Axiom of Infinity
• In a similar fashion to set comprehension, we will sometimes create

new sets by believing in the existence of a set which satisfies some
list of properties.

• For instance, the axiom of infinity says there is a set satisfying:
1. ∅ ∈ N
2. if x ∈ N then S(x) ∈ N.

• You might ask yourself how exactly one could implement this axiom
on a computer?

– The most important property of a set is what elements it contains.
– We could define a class InfiniteSet.
– Its constructor could take a Set of starting elements, start.
– InfiniteSet’s isIn(x) method takes a Set x and returns whether it is in the

instance of InfiniteSet or not.
– To do this, it first checks if if x is ∅ or if x ∈ start.
– If not, it check is x=S(y), for some y (this check is implementable if y is

not too complicated). If not, then isIn(x) returns false.
– If yes, then isIn(x) returns the values of isIn(y).

The Set of Natural Numbers

• We can view the smallest set satisfying the axiom of
infinity as the set of natural numbers, N, if we interpret
∅ to mean 0 and S(x) to mean x+1.

• To make this smallest set we can take start= ∅ , in our
constructor of InfiniteSet from the last slide

• For two natural numbers x,y we say x<y if x ∈y.
• Notice we can define addition and multiplication on the

natural numbers with rules:
1. x + 0 = x
2. x+ S(y) = S(x+y)

• These rules give us algorithms for computing + and ·
based on an algorithm for S(x).

1. x·0 = 0

2. x·S(y) = x·y + x

Functions

• A function is a binary relation f ⊆ DxR such that
each x ∈ D occurs in exactly one pair (x,y) ∈ f.

• Rather than write f ⊆ DxR, we write f: D->R to
say f is a function or mapping from D (called the
domain) to R (called the range).

• We write f(a)=b to say that f maps the element a
of D to b of R.

• For example, f: N -> N, where f(x) = x2 is a
function.

Types of Functions

• A function is one-to-one (aka injective), if for
every x,y in its domain f(x)≠f(y).

• For example, f: N -> N, where f(x)=2x is injective.
• A function is onto (aka surjective), if for every y

in its range there is some x in such that f(x)=y.
• For example, f: N -> N, f(x)= x/2 is surjective.
• A function is a bijection if it is one-to-one and

onto.

Size of sets
• A set is called finite if there is a bijection between it and

some natural number.
• The cardinality (aka size) of a finite set A, |A|, is the

natural number it is bijective with.
• For example, consider f:{a,b}-->{∅,{∅}}=S(S(∅)) =2

defined by f(a) = ∅ and f(b) ={∅}. This is a bijection and
shows |A| = 2.

• We call a set countably infinite if there is a bijection
between it and the set of natural numbers.

• We call a set uncountably infinite, if it is not finite and it
is not countable infinite.

