
Context Free Grammars, Parsing,
and Amibuity

CS154
Chris Pollett
Feb 28, 2007.

Outline

• JFLAP
• Intuitions about Compiler
• Ambiguity
• Left and Rightmost Derivations
• Brute Force Parsing

JFLAP and the Pumping Lemma
• JFLAP has a “Regular Pumping Lemma”

button.
• Clicking on it gives a window:

More JFLAP
• Selecting one of these languages lets you play a game versus the computer.
• You choose number of states of machine. i.e., pumping length.
• It selects a string longer than this length.
• You get to choose how it is split
• The computer either tries to find a string that can be pumped but which is not in the

language or it loses.

Yet More JFLAP
• JFLAP also has a grammar button.
• If you click on it you can then specify a

grammar. If you like, it could be a regular
grammar or a CFG.

• JFLAP supports conversions of the
grammar to a number of normal forms as
well as supports check if a string is in the
language of a grammar.

Intuitions about Compilers
• Recall compilers take strings written in a high level language like C or Java and spit out

code in machine language.
• So a compilers job is to assign machine code “meaning” to a string written in C.
• The C language might be specified using a CFG.
• For instance, we might have a rule like:

<while_statement> ::= while <expression> <statement>
• Crudely, we could imagine writing a recursive program to handle this:
int parseWhile(String program, int whereParsing, MachineCode whileCode)
{
 MachineCode expressionCode = new MachineCode();
 MachineCode statementCode = new MachineCode();
 whereParsing += 5; //advance passed the keyword “while”
 whereParsing = parseExpression(program, whereParsing, expressionCode);
 whereParsing = parseStatement(program, whereParsing, statementCode);
 // some code to build whileCode from expressionCode and statementCode
 return whereParsing;
}
• The underlying assumption for compilation to work is that there can be

only one machine code meaning one can give to a given C string.
• Here we have to be careful…

Ambiguity
• Sometime a grammar can generate string in more than one way.
• Such a string will have several different parse trees. As the parse tree is supposed to give

us the “meaning” of the string, such a string would have more than one meaning.
• A string with more than one parse tree with respect to a grammar is said to be

ambiguously derived in that grammar.
• For example, consider <EXPR> --> <EXPR>+ <EXPR>| <EXPR> x

<EXPR>|(<EXPR>) |a.
• Then a + a x a can be derived with two different parse trees.

• The left tree probably means a+(a x a); whereas, the right means (a+a) x a

<EXPR>

<EXPR>
<EXPR>

a a a+ x

<EXPR>

<EXPR>

ax

<EXPR> <EXPR>

<EXPR>

a a+

<EXPR>

<EXPR>

<EXPR>

Leftmost and Rightmost
Derivations

• We want to formalize the notion of ambiguity in terms of derivations rather
than parse trees as derivations are easier to work with syntactically.

• We say that a derivation of a string w in a grammar G is a leftmost derivation
if at every step the leftmost remaining variable is the one replaced.

• We say that a derivation of a string w in a grammar G is a rightmost
derivation if at every step the rightmost remaining variable is the one
replaced.

• As an example, if our CFG was A-->BAC | λ, B --> b, C-->c. Then
A=>BAC=>bAC=>bBACC=>bbACC=>bbCC=>bbcC=>bbcc, is a leftmost
derivation of bbcc.

• On the other hand,
A=>BAC=>BAc=>BBACc=>BBAcc=>BBcc=>Bbcc=>bbcc would be a
rightmost derivation of the same string.

• Intuitively, if we have two ways to expand the leftmost (respectively,
rightmost) symbol then the derivation will be ambiguous.

Ambiguity and Leftmost
Derivations

• A string w is derived ambiguously in G if it has two or more
different leftmost derivations (resp. rightmost derivations). A CFG
is called ambiguous if it generates some string ambiguously.

• In the case of a + a x a, the two left most derivations are:
(1) <EXPR>=> <EXPR> + <EXPR> => a + <EXPR> => a + <EXPR> x

<EXPR> => a+ a x <EXPR> => a + a x a;
(2) <EXPR>=> <EXPR> x <EXPR> => <EXPR> + <EXPR> x <EXPR>

=> a + <EXPR> x <EXPR> => a+ a x <EXPR> => a + a x a;
• There are often many different CFGs for the same language. Even

though one of these may be ambiguous some other may be
unambiguous. We say a language is inherently ambiguous if one
can never find an unambiguous CFG for it. The book says without
proof that {aibjck| i=j or j=k} is inherently ambiguous.

Brute Force Parsing
• One way to do parsing is by exhaustive search.
• We consider each one step derivation from the start

variable, then each two step derivation, etc. in turn.
• If we ever see the string we want we accept.
• If all the active derivations involve strings of terminals and

variables longer than the string w we are searching for, we
halt and reject.

• To handle rules like A->B. Which can give derivations like
A=>B=>A, we maintain a list of strings we have already
seen. If we repeat, we prune that branch.

• This is an exponential time algorithm; whereas, if we use a
normal form for our grammars we can speed things up to
be either cubic or in some cases linear time.

