Context Free Grammars, Parsing, and Amibuity

CS154 Chris Pollett Feb 28, 2007.

Outline

- JFLAP
- Intuitions about Compiler
- Ambiguity
- Left and Rightmost Derivations
- Brute Force Parsing

JFLAP and the Pumping Lemma

- JFLAP has a "Regular Pumping Lemma" button.
- Clicking on it gives a window:

Select a Pumping Lemma	
$L = \{a^n b^n : n \ge 0\}$	Select
$L = \{w \in \{a, b\}^* : n_a(w) < n_b(w)\}$	Select
$L = \{ww^R : w \in \{a, b\}^*\}$	Select
$L = \{a^{n!} : n \ge 0\}$	Select
$L = \{(ab)^n a^k : n > k, k \ge 0\}$	Select
$L = \{a^{n}b^{k}c^{n+k} : n \ge 0, k \ge 0\}$	Select
$L = \{a^n b^l a^k : n > 5, l > 3, k \le l\}$	Select
$L = \{a^n : n \ge 2, n \text{ is a prime number}\}$	Select
$L = \{a^n : n \text{ is even}\}$	Select
	Select a Pumping Lemma $L = \{a^n b^n : n \ge 0\}$ $L = \{w \in \{a, b\}^* : n_a (w) < n_b (w)\}$ $L = \{ww^R : w \in \{a, b\}^*\}$ $L = \{ww^R : w \in \{a, b\}^*\}$ $L = \{a^{n!} : n \ge 0\}$ $L = \{(ab)^n a^k : n > k, k \ge 0\}$ $L = \{(ab)^n a^k : n > k, k \ge 0\}$ $L = \{a^n b^l a^k : n > 5, l > 3, k \le l\}$ $L = \{a^n : n \ge 2, n \text{ is a prime number}\}$ $L = \{a^n : n \text{ is even}\}$

More JFLAP

- Selecting one of these languages lets you play a game versus the computer.
- You choose number of states of machine. i.e., pumping length.
- It selects a string longer than this length.
- You get to choose how it is split
- The computer either tries to find a string that can be pumped but which is not in the language or it loses.

Mess	ages		<i>L</i> -	140.	# 2 07 K	guiai 1 i	imping i	Amma		
Pleas	e select a	value for	rm in Bo	x 1 and	press "Er	nter".				
1. Se	lect integ	er m								Charter
										Start over
-2. Gi	ven intege	er m, her	e's string	w such	that w	>= m				
-3 50	lect decor	mositio	n of win	to xvz						
x:	icer accor	npositio		to Aj2				x :		
-										_
×	1	1	1	1	1	1	1	lyl-	1	1
y.								191.		Set xyz
	I.	1	I.	1	1	1	1		1	1
Z:								z :		
-4. A	choice of	i to give	contradi	ction						
i:		pur	nped str	ing:						
-5. Ar	nimation-									

Yet More JFLAP

- JFLAP also has a grammar button.
- If you click on it you can then specify a grammar. If you like, it could be a regular grammar or a CFG.
- JFLAP supports conversions of the grammar to a number of normal forms as well as supports check if a string is in the language of a grammar.

0	9 \varTheta	JFLAP : <untitled2></untitled2>	
File	Input Convert H	lelp	×
A B C	Build LL(1) Parse Build SLR(1) Parse Brute Force Parse Multiple Brute Force	Editor Se Table Se Capital Se Cap	

Intuitions about Compilers

- Recall compilers take strings written in a high level language like C or Java and spit out code in machine language.
- So a compilers job is to assign machine code "meaning" to a string written in C.
- The C language might be specified using a CFG.
- For instance, we might have a rule like: <while_statement> ::= while <expression> <statement>
- Crudely, we could imagine writing a recursive program to handle this:

int parseWhile(String program, int whereParsing, MachineCode whileCode)

```
{
```

```
MachineCode expressionCode = new MachineCode();
MachineCode statementCode = new MachineCode();
whereParsing += 5; //advance passed the keyword "while"
whereParsing = parseExpression(program, whereParsing, expressionCode);
whereParsing = parseStatement(program, whereParsing, statementCode);
// some code to build whileCode from expressionCode and statementCode
return whereParsing;
```

- }
- The underlying assumption for compilation to work is that there can be only one machine code meaning one can give to a given C string.
- Here we have to be careful...

Ambiguity

- Sometime a grammar can generate string in more than one way.
- Such a string will have several different parse trees. As the parse tree is supposed to give us the "meaning" of the string, such a string would have more than one meaning.
- A string with more than one parse tree with respect to a grammar is said to be **ambiguously** derived in that grammar.
- For example, consider <EXPR> --> <EXPR>+ <EXPR>| <EXPR> x <EXPR>|(<EXPR>) la.
- Then $a + a \times a$ can be derived with two **different** parse trees.

• The left tree probably means a+(a x a); whereas, the right means (a+a) x a

Leftmost and Rightmost Derivations

- We want to formalize the notion of ambiguity in terms of derivations rather than parse trees as derivations are easier to work with syntactically.
- We say that a derivation of a string w in a grammar G is a **leftmost derivation** if at every step the leftmost remaining variable is the one replaced.
- We say that a derivation of a string w in a grammar G is a **rightmost derivation** if at every step the rightmost remaining variable is the one replaced.
- As an example, if our CFG was A-->BAC | λ, B --> b, C-->c. Then A=>BAC=>bAC=>bBACC=>bbACC=>bbCC=>bbcC=>bbcc, is a leftmost derivation of bbcc.
- On the other hand, A=>BAC=>BAc=>BBACc=>BBAcc=>BBcc=>Bbcc=>bbcc would be a rightmost derivation of the same string.
- Intuitively, if we have two ways to expand the leftmost (respectively, rightmost) symbol then the derivation will be ambiguous.

Ambiguity and Leftmost Derivations

- A string w is derived **ambiguously** in G if it has two or more different leftmost derivations (resp. rightmost derivations). A CFG is called **ambiguous** if it generates some string ambiguously.
- In the case of $a + a \times a$, the two left most derivations are:
 - (1) $\langle EXPR \rangle = \langle EXPR \rangle + \langle EXPR \rangle = \rangle a + \langle EXPR \rangle = \rangle a + \langle EXPR \rangle x$ $\langle EXPR \rangle = \rangle a + a x \langle EXPR \rangle = \rangle a + a x a;$
 - (2) $\langle EXPR \rangle = \langle EXPR \rangle x \langle EXPR \rangle = \langle EXPR \rangle + \langle EXPR \rangle x \langle EXPR \rangle$ => a + $\langle EXPR \rangle x \langle EXPR \rangle = \rangle$ a + a x $\langle EXPR \rangle = \rangle$ a + a x a;
- There are often many different CFGs for the same language. Even though one of these may be ambiguous some other may be unambiguous. We say a language is **inherently ambiguous** if one can never find an unambiguous CFG for it. The book says without proof that {aⁱb^jc^k| i=j or j=k} is inherently ambiguous.

Brute Force Parsing

- One way to do parsing is by **exhaustive search**.
- We consider each one step derivation from the start variable, then each two step derivation, etc. in turn.
- If we ever see the string we want we accept.
- If all the active derivations involve strings of terminals and variables longer than the string w we are searching for, we halt and reject.
- To handle rules like A->B. Which can give derivations like A=>B=>A, we maintain a list of strings we have already seen. If we repeat, we prune that branch.
- This is an exponential time algorithm; whereas, if we use a normal form for our grammars we can speed things up to be either cubic or in some cases linear time.