Context Free Grammars, Parsing,
and Amibuity

CS154
Chris Pollett
Feb 28, 2007.

Outline

JFLAP

Intuitions about Compiler
Ambiguity

Left and Rightmost Derivations
Brute Force Parsing

JFLAP and the Pumping Lemma

 JFLAP has a “Regular Pumping Lemma”
button.

ttttttttttttttt
IIIIIIII

eeeeee

eeeeee

eeeeee

eeeeee

L={(ab)"a" : n > k, k= 0}

eeeeee

eeeeee

eeeeee

eeeeee

eeeeee

More JFLAP

Selecting one of these languages lets you play a game versus the computer.
You choose number of states of machine. i.e., pumping length.

It selects a string longer than this length.

You get to choose how it is split

The computer either tries to find a string that can be pumped but which is not in the
language or it loses.

r6 06 JFLAP : <untitled4> X
i File Help x

Pumping Lemma]

| i
L ={a"p" : n = 0} Regular Pumping Lemma
Messages

Please select a value for m in Box 1 and press "Enter".

L

1. Select integer m

| (start over)
2. Given integer m, here's string w such that |w| >=m
3. Select decomposition of w into xyz I
X |x|:
—
=E t
y: Iyl L
=
7
z |zl:

4. A choice of i to give contradiction
i pumped string:

5. Animation

Yet More JFLLAP

e JFLAP also has a grammar button.

e If you click on it you can then specily a
grammar. If you like, it could be a regular
grammar or a CFG.

* JFLAP supports conversions of the
grammar to a number of normal forms as
well as supports check if a string 1s in the
language of a grammar.

en0e JFLAP : <untitled? =

1 File m Convert Help

Build LL({1) Parse Table ' (Editor)
 Build SLR{1) Parse Table
Brute Force Parse

Multiple Brute Force Parse
= ud
_}l

h |

lw B ==

Intuitions about Compilers

e Recall compilers take strings written in a high level language like C or Java and spit out
code in machine language.

* So acompilers job is to assign machine code “meaning” to a string written in C.
 The C language might be specified using a CFG.

For instance, we might have a rule like:
<while_statement> ::= while <expression> <statement>

* Crudely, we could imagine writing a recursive program to handle this:
int parseWhile(String program, int whereParsing, MachineCode whileCode)
{
MachineCode expressionCode = new MachineCode();
MachineCode statementCode = new MachineCode();
whereParsing +=5; //advance passed the keyword “while”
whereParsing = parseExpression(program, whereParsing, expressionCode);

whereParsing = parseStatement(program, whereParsing, statementCode);
// 'some code to build whileCode from expressionCode and statementCode
return whereParsing;

¥

e The underlying assumption for compilation to work is that there can be
only one machine code meaning one can give to a given C string.

e Here we have to be careful...

Ambiguity

e Sometime a grammar can generate string in more than one way.

e Such a string will have several different parse trees. As the parse tree is supposed to give
us the “meaning” of the string, such a string would have more than one meaning.

e A string with more than one parse tree with respect to a grammar is said to be
ambiguously derived in that grammar.

e For example, consider <EXPR> --> <EXPR>+ <EXPR>| <EXPR> x
<EXPR>I(<EXPR>) la.

* Thena+ ax acan be derived with twodKfpRat parse trees.

<EXPR§ /<EXP >
</EXPR\> <EXPR>
<EXPR> <EXPR» <EXPR> <EA)€PR E\X‘PR: <EXPR>

Lo O O !

a + a X a a + a X a

\'

e The left tree probably means a+(a x a); whereas, the right means (a+a) x a

Leftmost and Rightmost
Derivations

We want to formalize the notion of ambiguity in terms of derivations rather
than parse trees as derivations are easier to work with syntactically.

We say that a derivation of a string w in a grammar G is a leftmost derivation
if at every step the leftmost remaining variable is the one replaced.

We say that a derivation of a string w in a grammar G is a rightmost
derivation if at every step the rightmost remaining variable is the one
replaced.

As an example, if our CFG was A-->BAC | A, B --> b, C-->c. Then
A=>BAC=>bAC=>bBACC=>bbACC=>bbCC=>bbcC=>bbcc, is a leftmost
derivation of bbcc.

On the other hand,
A=>BAC=>BAc=>BBACc=>BBAcc=>BBcc=>Bbcc=>bbcc would be a
rightmost derivation of the same string.

Intuitively, if we have two ways to expand the leftmost (respectively,
rightmost) symbol then the derivation will be ambiguous.

Ambiguity and Leftmost
Derivations

A string w is derived ambiguously in G if it has two or more
different leftmost derivations (resp. rightmost derivations). A CFG
is called ambiguous if it generates some string ambiguously.

In the case of a + a x a, the two left most derivations are:

(1) <EXPR>=><EXPR> + <EXPR>=>a + <EXPR>=>a + <EXPR> x
<EXPR>=>a+ax <EXPR>=> a+axa;

(2) <EXPR>=><EXPR> x <EXPR> => <EXPR> + <EXPR> x <EXPR>
=>a + <EXPR> x <EXPR>=>a+ a x <EXPR>=> a+axa;

There are often many different CFGs for the same language. Even
though one of these may be ambiguous some other may be
unambiguous. We say a language is inherently ambiguous if one
can never find an unambiguous CFG for it. The book says without
proof that {a'bickl i=j or j=k} is inherently ambiguous.

Brute Force Parsing

One way to do parsing is by exhaustive search.

We consider each one step derivation from the start
variable, then each two step derivation, etc. in turn.

If we ever see the string we want we accept.

If all the active derivations involve strings of terminals and
variables longer than the string w we are searching for, we
halt and reject.

To handle rules like A->B. Which can give derivations like
A=>B=>A, we maintain a list of strings we have already
seen. If we repeat, we prune that branch.

This 1s an exponential time algorithm; whereas, if we use a
normal form for our grammars we can speed things up to
be either cubic or in some cases linear time.

