
The Pumping Lemma, Context
Free Grammars

CS154
Chris Pollett
Feb 26, 2007.

Outline

• The Pumping Lemma
• Context free Grammars

The Pumping Lemma

• Suppose we have a machine M with k states.
Feed in some input string w of length n>k. At
some point in the computation, by the Pigeonhole
principle, the machine must repeat a state.

• Suppose M accepts w. Then can imagine M’s
computation splitting w into 3 pieces, w=xyz,
according to the diagram:

q0
q

q’

x

y

z

More on the Pumping Lemma

But this implies that M accepts the strings xz, xyyz,
xyyyz, etc.

This is essentially what the Pumping Lemma says:
Lemma (Pumping Lemma).

If A is a regular language, then there is a number p
(the pumping length) where, if s is any string in A
of length at least p, then s may be divided into
three pieces s=xyz, such that:
for each i>= 0, xyiz is in A
|y| > 0, and
 |xy| <= p

Using the Pumping Lemma
• We can use the pumping lemma to show language are not

regular.
• For example, let C={ w| w has an equal number of 0’s and

1’s}. To prove C is not regular:
– Suppose DFA M that recognizes C.
– Let p be M’s pumping length
– Consider the string w = 0p1p. This string is in the language and has

length > p.
– So by the pumping lemma w = xyz, where |xy| ≤p, |y|> 0, and

where xyiz is in the language for all i≥0. That means x = 0k and
y=0j where k+j ≤p and j>0. But then taking i=0, xz = 0p-j1p should
be in C. As p-j is not equal to p this give a contradiction. So C is
not regular.

More Examples
Show L = {wwR | w∈∑*} is not regular.

– Suppose M is a DFA that recognizes L.
– Let p be M’s pumping length
– Consider the string w = 0p110p. This string is in the language and has length > p.
– So by the pumping lemma w = xyz, where |xy| ≤p, |y|> 0, and where xyiz is in the

language for all i≥0. That means x = 0k and y=0j where k+j ≤p and j>0. But then
taking i=0, xz = 0p-j110p should be in L. The two 11’s not occur on the left hand
half of xz and there are no 1’s on the right hand half. So xz is not of the form string
followed by reverse of the same string so in not in L, contradicting the pumping
lemma. So L is not regular.

Show that L = {w∈∑* | na(w) < nb(w) } is not
regular.

– Suppose M is a DFA that recognizes L.
– Let p be M’s pumping length
– Consider the string w = apbp+1. This string is in the language and has length > p.
– So by the pumping lemma w = xyz, where |xy| ≤p, |y|> 0, and where xyiz is in the

language for all i≥0. That means x = ak and y=aj where k+j ≤p and j>0. But then
taking i=2, xy2z = ap+jbp+1 should be in L. As j>0, na(xy2z) = p+j is not less than
nb(xy2z)= p+1. So xy2z is not in L, contradicting the pumping lemma. So L is not
regular.

Context Free Languages
• We saw that regular languages were useful for doing

things like string matching.
• This might occur in practice as the so-called lexical

analysis phase of compiler. That is, the phase in which we
recognize tokens like language reserved words, variable
names, constants, etc.

• We now turn to ways of specify programming languages
or even aspects of natural languages.

• The key to this is to have some way to recognize the
underlying structures such as nouns and verbs, or control
blocks, etc of the language.

• Context Free Grammars (CFGs), which are a less restricted
form of grammar than a regular grammar, and their
languages will provide us with the tools to do this.

Example CFG
• Recall a grammar consists of a collection of substitution rules (aka

productions). For instance:
A --> 0A1
A --> B
B --> #

• A rule has a two types of symbols variables and terminals.
• Usually, we’ll write variables using uppercase letters or in brackets like

<variable>. Terminals are supposed to be strings over the alphabet of the
language we are considering.

• In a CFG, the left hand side of each rule has one variable; the right hand side
can be a string of variables and terminals.

• Variables can be substituted for; terminals cannot. One variable usually
denoted by S is usually distinguishes as a start variable.

• An example sequence of substitutions (aka a derivation) in the above
grammar might be: A => 0A1 => 00A11 => 00B11 => 00#11

More on CFGs
• Such a derivation might also be drawn as a parse tree:

• Here A=> 0A1 gives then A==> 0A1 => 00A11 gives
etc.

A
A
A
B
1 100

A
A

10

A
A
A

1 100

Formal Definitions
• A context free grammar is a 4-tuple (V, Σ, R, S) where

1. V is a finite set called the variables
2. Σ is a finite set, disjoint from V called the terminals.
3. R is a finite set of rules, with each rule being a pair consisting of a

variable and a string of variables and terminals, and
4. S∈ V is a start variable.

• For a rule A--> w where w is a string over (V∪Σ), and for other strings u
and v, we say uAv yields uwv, written uAv => uwv. We say u derives v,
written u=>*v, if there is a finite sequence:

u => u1 => u2 => … => uk=> v.
• The language of a CFG is the set of of string over ∑* derivable from its

start symbol.
• A language given by a context free grammar is called a context free

language.
• Sometimes we abbreviate multiple rules with same left hand side

using a ‘|’. For example, A--> 0A1 | B .

Example
• Consider the grammar G= (V, Σ, R, <EXPR>) where V is

{<EXPR>, <TERM>, <FACTOR>}
and Σ is (a, +, x, (,))
and the rules are:
<EXPR> --> <EXPR> + <TERM> | <TERM>
<TERM> --> <TERM> x <FACTOR> | <FACTOR>
<FACTOR> --> (<EXPR>) | a

• One can verify that <EXPR> =>* (a+a) x a.
– This is true since <EXPR> => <TERM> => <TERM> x <FACTOR> =>

<FACTOR> x <FACTOR> => (<EXPR>) x <FACTOR> => (<EXPR> +
<TERM>) x <FACTOR> => (<TERM> + <TERM>) x <FACTOR>
=> (<FACTOR> + <TERM>) x <FACTOR> => (a+ <TERM>) x
<FACTOR> => (a+ <FACTOR>) x <FACTOR> =>(a+a) x
<FACTOR> => (a+a) x a

Techniques for Designing CFGs

• Many CFLs are the union of simpler CFLs. So one
can design a CFG for each in turn with start states
S1, S2,… Sn .Then take the union of the rules and
add a new start variable with a rule S--> S1| S2|…
|Sn . For example, take the language {0n1n | n>=0}
∪ {1n0n | n>=0}. First we could make CFGs for
each language separately. Say, S1 --> 0 S1 1|ε and
S2 --> 1 S2 0|ε. Then add the rule S--> S1| S2.

• Notice any regular grammar is already a CFG, so
the regular languages are all CFGs.

More Techniques for Designing
CFGs

• For CFL which contain two substrings
which are linked in the sense that a machine
for such a language would need to
remember information about one on the
strings to verify information about the other
substring, you might want to consider rules
of the form R --> u R v. Here u and v
should satisfy the property you are trying to
verify.

