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• Multi-tape Turing Machines
• RAMS



k-tape Turing Machine

• One way you might try to improve the power of a TM is to allow multiple
tapes.

Definition A k-tape TM, where k≥1 is an integer, is a six-tuple M=(K,∑,∂ ,s, _,F)
where K,∑,s are as in the 1-tape case. Now, however, the transition functions
is a map
∂ : K x ∑k-->Kx∑k x{L,R}k

• Basically the heads on each tape can move independently of each other.
• For example, with a two tape machine an algorithm for palindrome testing is

easy.
– We set up the transition function so it first copies the first tape input to the second

tape.
– Then it rewinds the first tape and leaves the second tape at the end of the input.
– Then the first tape moves right while the second tape moves left and we compare

the two tape symbol by symbol. If they don’t match we halt and reject. If the
second tape gets back to the _ then we accept.



TIME  and SPACE classes.

• We shall use the k-tape model of TM as our basic model to study time and
space complexity.

• Let f:N --> N. We say that machine M operates within time f(n) if for any
input string x, the time require by M on input x is at most f(|x|). Here |x| is the
length of x as a string. We can make a similar definition for space.

Defn. We say that a language L is in TIME(f(n)) (resp. SPACE(f(n))) if it is
decided by some k-tape TM in time f(n) (resp. space f(n)).

• For example, the algorithm for palindrome in time TIME(3(n+2)).
• You can show for a single tape machine for palindrome you need at least time

Ω(n2).
• How well can a 1-tape machine simulate a k-tape machine?



Simulating k-tape by 1-tape
Thm. Given any k-tape machine M that operates within time f(n), we can construct a 1-tape

machine M´operating within time O((f(n))2).
Proof.  Let M=(K,∑,∂ ,s, _, F) be a k tape machine.
• The idea is  M´ alphabet, ∑´, is going to be expanded to include symbol #´ to denote the last used

square of a tape. And we are going to add to ∑´  a symbol b for each symbol b in ∑.
• A configuration of M can now be written as:

(q, #w1a1v1#´w2a2v2#´…#´wkakvk#´)
• So except for the state which we can keep track of in K´ the rest of the state is a string over ∑́ .
• We will use new states K´ to keep track of the state of M during a simulation step.
• To simulate M, we first convert the input into the initial configuration of M viewed as a string.
• Then to simulate a step we scan left to right the current configuration string, noting what symbol is

being read by each tape in our finite control.
• Next we rewind the tape and we then do passes again to update each tapes configuration.
• In the worst case we need to expand the number of tape square of each tape by 1. So we could need

(k(f(|x|)+1)+1, passes to simulate 1 step.
• So simulating f(|x|) steps take at most f(|x|)((k(f(|x|)+1)+1) times which is  O((f(n))2).



Random Access Machines
(RAMs)

• Consist of a program which acts on an arrays of registers.
• Each register is capable of storing an arbitrarily large integers (either positive or negative).
• Register 0 is called the accumulator. It is where any computations will be done.
• A RAM program consists of a finite sequence of instructions P=(p1, p2, …pn).
• The machine has a program counter which says what instruction is to be executed next.
• This initially starts at the first instruction. An input w=w1,…,wn is initially placed symbol-wise into

registers 1 through n. (We assume some encoding of the alphabet into the integers). All other
registers are 0.

• A step of the machine consists of looking at the instruction pointed to by the program counter,
executing that instruction, then adding 1 to the program counter if the instruction does not modify the
program counter and is not the halt instruction.

• Upon halting, the output of the computation is the contents of the accumulator. For languages, we say
w is in the language of the RAM, if the accumulator is positive, and is not in the language otherwise.



Allowable Instructions
• Each instruction is from the list:

1. Read j /* read  into register j into accumulator */
2. Read (j) /* look up value v of register j then read register v into the accumulator*/
3. Store j /* store accumulator’s value into register j */
4. Store (j) /* look up value v of register j then store acumulators values into register v*/
5. Load x /* set the accumulator’s value to   x */
6. Add j /* add the value of register j to the accumulator’s value */
7. Sub j /* subtract the value of register j from the acummulator’s value */
8. Half /* divide accumulator’s value by 2 round down (aka shift left)*/
9. Jump j /* set the program counter to be the jth instruction */
10. JPos j /* if the accumulator is positive, then set the program counter to be j */
11. JZero j /* if the accumulator is zero, then set the program counter to be j */
12. JNeg j /* if the accumulator is negative, then set the program counter to be j */
13. HALT /* stop execution */



Example Program for Multiplication
Suppose we input into register 1 and 2 two number i1 and i2 we would like to multiply these two numbers:
1. Read 1 //(Register 1 contains i1 ; during the kth iteration
2. Store 5  //   Register 5 contains i12k. At the start k=0)
3. Read 2
4. Store 2 //(Register 2 contains i2/2k just before we increment k )
5. Half //(k is incremented, and the k iteration begins)
6. Store 3 // (Register 3 contains half register 2 )
7. Add 3 //(so now accumulator is twice register 3)
8. Sub 2 //(accumulator will be 0 if low order bit of what was stored in register 2 is 0)
9. JZero 13
10. Read 4 //( the effect is we add register 5 to register 4
11. Add 5  //  only if the kth least significant bit of i2 is 0)
12. Store 4  //(Register 4 contains i1*(i2 mod 2k))
13. Read 5
14. Add 5
15. Store 5 //(see comment of instruction 3)
16. Read 3
17. JZero 19
18. Jump 4 //(if not, we repeat)
19. Read 4 //(the result)
20. Halt



Runtime of a RAM

• Let D be a set of finite sequences of integers.
• A program P computes a function f from D to the

integers if for all I in D, the programP halts with
f(I) in its accumulator

• Let len(i) be the binary length of integer i.
• The length of the input is defined as len(I) = ∑j

len(ij).
• We say P runs in time g(n) if for all I, such that

len(I) = n, it runs in at most g(len(I)) steps.



Simulation Set-up
Theorem If L is in TIME(f(n)), then there is a RAM
which computes  it in times O(f(n)).
Proof: Let M be the TM recognizing L. We assume one black space is added to any input and the tape

alphabet has been encoded as integers. The RAM first moves the input to Registers 4 through n+3.
This is actually a little tricky to do. First, the RAM reads registers 1 and 2. Since the tape alphabet of
M is finite, the RAM can “remember” these values without having to write them to some other
register by branching to different subroutines to execute. As these values are now remembered,
register 1 can be used as a counter to count up. By doing Read (1) instructions and incrementing
register 1, until the encoding of the ‘_’ for the end of the input is found we scan to the end of the
input. We look one register before this, read it, and store it into register 2. Adding 3 to register 1, we
can then load the accumulator with register 2’s values and do a Store (1). This moves the nth symbol
to register n+3. By subtracting 4 from register 1 and doing a read (1) we can get the next symbols to
move and so on. We are now almost ready to begin the simulation.



 More Proof

Register 1 is used to hold the current tape square number being read by
the TM in the simulation and this is initially set to 4 , the first square of
the input. Register 3 holds a special start of tape symbol.  The program
now tries to simulate steps of the Turing machine. The program has a
sequence of instructions simulating each state q of M and has a
subsequence of these instruction, N(q,j), for handling the transition for
state q while reading the jth type of alphabet symbol.



N(q, j)
Suppose δ(q, j) = (p, k, D). Here D is a direction. To simulate this we do:
N(q,j)  Load j
N(q,j)+1  Store 2
N(q,j)+2   Read (1)
N(q,j)+3   Sub 2 //(if the tape position we are reading has value j this will be 0)
N(q,j)+4   JZero N(q, j) + 6
N(q,j)+5   Jump N(q, j+1) //(if we are not reading a ‘j’ check if we are reading a ‘j+1’)
N(q,j)+6   Load k
N(q,j)+7   Store (1)
N(q,j)+8   Load -1, 0, 1 //(depending on which direction the move was)
N(q,j)+9   Add 1
N(q,j)+10 Store 1
N(q,j)+11 Jump N(p, k)




