
More PDAs

CS154
Chris Pollett

Mar 21, 2007.

Outline

• PDA languages are CFL
• Deterministic PDAs
• Grammars for DCFLs

PDA recognizes => CFL
• Let P be a PDA. We want to make a CFG G that generates the same language.
• For each pair of states p,q in P we will have in G a variable Apq. This variable

will be able to generate all strings that can take P in state p with the empty
stack to state q with the empty stack.

• To simplify the problem we will assume P has been modified so that:
– it has a single accept state
– it empties its stack (except start of stack symbol) before accepting
– each transition either pushes a symbol onto the stack or pops one off of the

stack (but not both and not neither). (We might add states to make our
machine have this property).

• G will have rules App --> λ for each state p of P; Apq--> aArsb for each p,q, r,s
such that δ(p,a, λ) contains (r,t) and δ(s,b, t) contains (q, λ), and Apq-> AprArqfor
any state r.

• The start variable of G will be Aq0,qaccept.

Example

• Consider the machine:

• It recognizes the language {anbn | n>0}.
• It has a single accept state and each transition either pushes or pops a symbol,

so we can apply the construction.
• This machine empties the stack except for the start of stack symbol.
• The start variable given by the construction will be Aq0q3. We’ll abbreviate this

as A03.
• Many of the rules the construction would give are completely useless;

nevertheless, one can check it does produce the rules A03--> λA12 λ, A12--
>aA12b, A12-->aA11b and A11--> λ.

λ

DPDAs

Defn. A PDA is called a deterministic PDA
(DPDA) if:

(1) δ(q,a,b) only contains one element.
(2) if δ (q, λ, b) is not empty, then δ(q,c,b) must be

empty for every c in ∑.
• These conditions ensure there is at most one

move, in any fixed state with the same top of
stack.

• Notice unlike DFAs we still allow λ transitions.
• A language is DCFL (a deterministic context

free language) if it is recognized by a DPDA.

Example

• L = {anbn | n≥0} is a DCFL. We can take M to be:
({q0, q1, q2}, {a,b}, {Z,1}, δ, q0, Z, {q0})
where:
δ(q0,a, Z) = {(q1, 1Z)},
δ(q1, a, 1) ={(q1, 11)},
δ(q1, b, 1) ={(q2, λ)},
δ(q2, b, 1) ={(q2, λ)},
δ(q2, λ, 0) ={(q0, λ)}

• I am using Z as the initial stack symbol, as this is
what JFLAP uses.

Example

Consider L the union of the language L1={anbn |
n≥0} and L2= {anb2n | n≥0}.

• Each of these languages individually is DCFL.
• There union is context free. To see this take a

CFG for each with start symbols respectively S1
and S2. Then add the new start symbol S and rules
S-->S1 |S2.

• It turns out L is not DCFL.

JFLAP Examples
• We’ve already mentioned JFLAP has tools for grammars.
• On its main button panel it also has a button “Pushdown Automata”
• This allows the user to create pushdown automata in much the same

way as DFAs are made in JFLAP.
• When you choose the “Test” menu to run an automata on some inputs

you will notice that the starting stack symbol is always Z.
• Next day we’ll look at how JFLAP converts PDAs to CFGs

