More PDAs

CS154

Chris Pollett
Mar 21, 2007.

Outline

- PDA languages are CFL
- Deterministic PDAs
- Grammars for DCFLs

PDA recognizes $=>$ CFL

- Let P be a PDA. We want to make a CFG G that generates the same language.
- For each pair of states p, q in P we will have in G a variable A_{pq}. This variable will be able to generate all strings that can take P in state p with the empty stack to state q with the empty stack.
- To simplify the problem we will assume P has been modified so that:
- it has a single accept state
- it empties its stack (except start of stack symbol) before accepting
- each transition either pushes a symbol onto the stack or pops one off of the stack (but not both and not neither). (We might add states to make our machine have this property).
- G will have rules $A_{p p}{ }^{-->} \lambda$ for each state p of $P ; A_{p q}-->\mathrm{aA}_{\mathrm{rs}} \mathrm{b}$ for each $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ such that $\delta(\mathrm{p}, \mathrm{a}, \lambda)$ contains (r, t) and $\delta(\mathrm{s}, \mathrm{b}, \mathrm{t})$ contains (q, λ), and $\mathrm{A}_{\mathrm{pq}}->\mathrm{A}_{\mathrm{pr}} \mathrm{A}_{\mathrm{rq}}$ for any state r .
- The start variable of G will be $\mathrm{A}_{\mathrm{q} 0 \text {,qaccept }}$.

Example

- Consider the machine:

- It recognizes the language $\left\{a^{n} b^{n} \mid n>0\right\}$.
- It has a single accept state and each transition either pushes or pops a symbol, so we can apply the construction.
- This machine empties the stack except for the start of stack symbol.
- The start variable given by the construction will be $\mathrm{A}_{\mathrm{q0} \mathrm{q} 3}$. We'll abbreviate this as A_{03}.
- Many of the rules the construction would give are completely useless; nevertheless, one can check it does produce the rules $\mathrm{A}_{03}{ }^{-->} \lambda_{\mathrm{A}_{12}} \lambda, \mathrm{~A}_{12}-{ }^{--}$ $>\mathrm{aA}_{12} \mathrm{~b}, \mathrm{~A}_{12}-->\mathrm{aA}_{11} \mathrm{~b}$ and $\mathrm{A}_{11^{--}}>\lambda$.

DPDAs

Defn. A PDA is called a deterministic PDA (DPDA) if:
(1) $\delta(\mathrm{q}, \mathrm{a}, \mathrm{b})$ only contains one element.
(2) if $\delta(\mathrm{q}, \lambda, \mathrm{b})$ is not empty, then $\delta(\mathrm{q}, \mathrm{c}, \mathrm{b})$ must be empty for every c in Σ.

- These conditions ensure there is at most one move, in any fixed state with the same top of stack.
- Notice unlike DFAs we still allow λ transitions.
- A language is DCFL (a deterministic context free language) if it is recognized by a DPDA.

Example

- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is a DCFL. We can take M to be: (\{q0, q1, q2\}, \{a,b\}, \{Z,1\}, $\delta, q 0, Z,\{q 0\}$) where:

$$
\begin{aligned}
& \delta(\mathrm{q} 0, \mathrm{a}, \mathrm{Z})=\{(\mathrm{q} 1,1 \mathrm{Z})\}, \\
& \delta(\mathrm{q} 1, \mathrm{a}, 1)=\{(\mathrm{q} 1,11)\}, \\
& \delta(\mathrm{q} 1, \mathrm{~b}, 1)=\{(\mathrm{q} 2, \lambda)\}, \\
& \delta(\mathrm{q} 2, \mathrm{~b}, 1)=\{(\mathrm{q} 2, \lambda)\}, \\
& \delta(\mathrm{q} 2, \lambda, 0)=\{(\mathrm{q} 0, \lambda)\}
\end{aligned}
$$

- I am using Z as the initial stack symbol, as this is what JFLAP uses.

Example

Consider L the union of the language $\mathrm{L} 1=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid\right.$ $\mathrm{n} \geq 0\}$ and $\mathrm{L} 2=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}} \mid \mathrm{n} \geq 0\right\}$.

- Each of these languages individually is DCFL.
- There union is context free. To see this take a CFG for each with start symbols respectively S1 and S 2 . Then add the new start symbol S and rules S-->S1 IS2.
- It turns out L is not DCFL.

JFLAP Examples

- We've already mentioned JFLAP has tools for grammars.
- On its main button panel it also has a button "Pushdown Automata"
- This allows the user to create pushdown automata in much the same way as DFAs are made in JFLAP.
- When you choose the "Test" menu to run an automata on some inputs you will notice that the starting stack symbol is always Z .
- Next day we'll look at how JFLAP converts PDAs to CFGs

