More PDASs

CS154
Chris Pollett
Mar 21, 2007.



Outline

 PDA languages are CFL
e Deterministic PDAs
e Grammars for DCFLs



PDA recognizes => CFL

Let P be a PDA. We want to make a CFG G that generates the same language.

For each pair of states p,q in P we will have in G a variable A . This variable
will be able to generate all strings that can take P in state p with the empty
stack to state q with the empty stack.

To simplify the problem we will assume P has been modified so that:
— 1t has a single accept state
— 1t empties its stack (except start of stack symbol) before accepting

— each transition either pushes a symbol onto the stack or pops one off of the
stack (but not both and not neither). (We might add states to make our
machine have this property).

G will have rules App --> )\ for each state p of P; qu—-> aA_ Db for each p,q, 1,8
such that d(p,a, A) contains (r,t) and 3(s,b, t) contains (q, A), and qu—> AprArqfor
any state r.

The start variable of G will be A  ..conr-



Example

Az
Consider the machine: -
_

It recognizes the language {a"b"| n>0}.

It has a single accept state and each transition either pushes or pops a symbol,
so we can apply the construction.

This machine empties the stack except for the start of stack symbol.

The start variable given by the construction will be A We’ll abbreviate this

as A;.

q0qg3*

Many of the rules the construction would give are completely useless;
nevertheless, one can check it does produce the rules A ;--> A, A, A ,--
>aA ,b, A ,-->aA band A --> A



DPDASs

Defn. A PDA i1s called a deterministic PDA
(DPDA) if:

(1) o(qg,a,b) only contains one element.

(2) 1f 0 (g, A, b) 1s not empty, then d(g,c,b) must be
empty for every ¢ in ).

e These conditions ensure there 1S at most one

move, in any fixed state with the same top of
stack.

e Notice unlike DFAs we still allow A transitions.

e A language 1s DCFL (a deterministic context
free language) if it 1s recognized by a DPDA.



Example

e L ={a"b"In=0}1s a DCFL. We can take M to be:
({90, q1, 92}, {a,b}, {Z,1}, 0, q0, Z, {q0} )
where:

0(q0,a, Z2) = {(ql, 12)}, SR
o(ql, a, 1) ={(ql, 11)},
o(ql, b, 1) ={(q2, M)},
0(q2, b, 1) ={(q2, M)},
0(q2, A, 0) ={(q0, A)}

e | am using Z as the initial stack symbol, as this is
what JFLAP uses.




Example

Consider L the union of the language L1={a"b" |
n>0} and L2= {a"b?"| n=0}.

e Each of these languages individually 1s DCFL.

e There union 1s context free. To see this take a
CFG for each with start symbols respectively S1
and S2. Then add the new start symbol S and rules
S-->S1 |S2.

e [t turns out L 1s not DCFL.



JFLAP Examples

We’ve already mentioned JFLAP has tools for grammars.
On its main button panel it also has a button “Pushdown Automata”

This allows the user to create pushdown automata in much the same
way as DFAs are made in JFLAP.

When you choose the ““Test” menu to run an automata on some inputs
you will notice that the starting stack symbol is always Z.

Next day we’ll look at how JFLAP converts PDAs to CFGs

@00 JFLAP : <untitled1>
"File Input Test Convert Help b4

Simulate: aabb 1'

a,h;a

I,ﬂl
_/\
. b,ah

WA

) W
AN B -
@Hﬁ— T %.)

E

F:

2| Step | Reset | Freeze | Thaw | Trace | Remove

RSN




