
More Closure Properties,
Algorithms, and the Pumping

Lemma
CS154

Chris Pollett
Feb 21, 2007.

Outline

• Closure under Quotients and
Homomorphisms

• Algorithms for membership, emptiness,
finiteness, and equality

• Determining if a language is regular

Intro to Homomorphisms
• From time to time it is useful to be able to translate things

from one language to another.
• In the simplest case this might involve transliterating

character by character, as when we convert Russian
spellings of proper names into English. For example,
СТАЛИН --> STALIN.

• As another example, we might want to encode our alphabet
using an error correcting code.

• In converting from one such language to another we have
to be sensitive to the fact that sometimes an exactly
equivalent string might not exist. For example, in English
we have the words blue and turquoise which in some other
language might both be translate to blue.

• Homomorphisms allow us to do these kind of mappings
for regular languages.

Definition of Homomorphism

Given two alphabets ∑ and ∑´. A function
h:∑-->(∑´)*

is called a homomorphism. The domain of h
can be extended to all strings over ∑* as
follows: if w=a1a2..an then h(w) =
h(a1)h(a2)…h(an).

Given a language L, its homomorphic image
is defined to be h(L) = {h(w)| w ∈L}.

Example

• For example strings over {a,b} might be encoded
to strings over {0,1} via the homomorphism: h(a)
= 000, h(b) = 111.

• In this case the language L={aa, baba} has as its
homomorphic image: h(L) = {000000,
111000111000}.

• A homomorphism does not have to be one to one.
Could map {a, b} to the alphabet {a} via h(a)=a,
h(b) =a. In which case h(ababa) = aaaaa.

Closure under Homomorphism
Theorem. Let L be a regular language over ∑ and let h:∑-->(∑´)* be a

homomorphism. Then h(L) is a regular language over ∑´.
Proof. We have shown that every regular language can be represented by

a regular expression. Let R be the regular expression for L. We prove
by induction on the complexity of R that h(L) will be regular. In the
base R is either a symbol a of ∑ or it is the empty string, or it is the
empty set. In the latter two cases L(R) = L(h(R)), so we are done. In
the first case, we note that h(a) is a string over ∑´ and so will be a
regular expression over the ∑´ alphabet. for the induction step, R is
either of the form R = (R1∪R2), R = (R1R2), or R = (R1)*. In each of
these cases, we have by the induction hypothesis a regular expressions
R´1 and R´2 for the homomorphic images of the languages of the
subexpressions. So to make regular expressions for the homomorphic
image of the language for R we can take either: R´ = (R1´∪R2´), R´ =
(R1´ R2 ´), or R´ = (R1 ´)*.

Quotients
• A common problem in the computer processing of natural languages is

to come up with “stems” of a given sequence of words.
• For example, if we do a Google search on fished, fishing, fishes, etc.

as a preprocessing step this might be stemmed to just the word “fish”.
• We will next consider a notion of the quotient of two languages which

allows us to formally consider things like stemming.
Definition. If A and B are two languages, their quotient A/B is the

language: {v | vw is in A and w is in B}.

• So if A={fished, fish, fishes, fishing, jumping, oranges}
and B={ing, ed} then A/B = {fish, jump}.

Closure under Quotients
Theorem. If A and B are regular languages, then A/B is also

a regular language.
Proof. Let M=(Q,∑, ∂, q0, F) be a DFA for A and let M´ be a

DFA for B. So a string v is in A/B = L(M)/L(M´) if
∂*(q0,v)=qi for some i, ∂*(qi,w) ∈ F, and w ∈L(M´). Let
Mi = (Q,∑, ∂, qi, F) , then L(Mi) ∩L(M´) is regular from
last day. Notice L(Mi) ∩L(M´) is nonempty iff the two
conditions ∂*(qi,w) ∈ F, and w ∈L(M´) hold for some w.
Further, we can check if L(Mi) ∩L(M´) is nonempty by
seeing if the some accepting state of this language is
reachable from the start state. Hence, we can make a
machine for A/B as (Q,∑, ∂, q0, F´) where F´ are those
state in Q such that L(Mi) ∩L(M´) is nonempty.

Algorithms for regular languages

• We now briefly present some algorithms for
checking various properties of regular languages.

• We say a regular language is in standard
representation if it is represented either as a
DFA, as an NFA, a regular expression, or as a
regular grammar.

• We know we can convert via an algorithm any of
these forms to any other.

Membership, Emptiness and
Finiteness Checking

Theorem Given a regular language L in standard
representation and a string w, there are algorithms which
can check: (a) if w is in L, (b) if L is empty, and (c) if L is
finite.

Proof. The first step of each algorithm is to obtain a DFA for
L.

(a)

cur_state = start_state;
for(i=0; i<w.length; i++)
{
 …
 //handle in ∂(q,a) =q´
 if(cur_state== q &&
 w.charAt(i) == ‘a’)
 {
 cur_state = q´;
 }
…//handle other case
}
if(cur_state in final_states) return accept;
else return reject;

(b)

foreach(state in final_states)
{
 if(isReachable(start_state, state)
 {
 /* isReachable checks if the
 second vertex is reachable from
 the first vertex by a simple
 path in the graph */

 return not_empty;
 }
}
return empty;

(c)

foreach(state in dfa_states)
{
 if(!(isReachable(start_state, state) &&
 isReachable(state, state)) break;

 foreach(fstate in final_states)
 {
 if(isReachable(state, fstate))
 {
 return language_is_infinite;
 }
 }
}
return language_is_finite;

