PDAs

CS154 Chris Pollett Mar 19, 2007.

Outline

- Pushdown Automata
- Equivalence

Pushdown Automata

- Our goal is a machine model corresponding CFG. This might help to develop parsers.
- To do this we will consider machines that have a stack:

- In a given state reading a given input symbol and a given stack symbol, the machine can switch states, advance to the next character of the input, pop the top symbol off the stack, or push a new symbol onto the stack.
- For instance, the language {0ⁿ1ⁿ | n>=0} could be recognized by such a machine. When one reads an 0 push it onto the stack. When one starts reading 1's, if one ever sees another 0 reject, also start popping 0's off of the stack. If when one gets to the end of the string the stack is empty, then accept.

Formal Definition

• A **pushdown automaton** is a 7-tuple $M=(Q, \Sigma, \Gamma, \delta, q_0, z, F)$ where

- 1. Q is the set of states
- 2. Σ is the input alphabet
- 3. Γ is the stack alphabet
- 4. $\delta: Q \ge (\Sigma \cup \{\lambda\}) \ge (\Gamma \cup \{\lambda\}) = 2^{(Q \ge (\Gamma \cup \{\lambda\}))}$ is the transition function
- 5. $q_0 \in Q$ is the start state, and
- 6. $z \in \Gamma$ is the start of stack symbol
- 7. $F \subseteq Q$ is the set of accept states.
- M accepts $w = w_1 w_2 ... w_n$ where each $w_i \in \Sigma \cup \{\lambda\}$ if there is a sequence of states $r_0, r_1, ..., r_m$ in Q and a sequence of strings $s_0, s_1, ..., s_m$ in Γ^* such that (1) $r_0 = q_0, s_0 = z$, (2) for i = 0, ..., m-1, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$ where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma \cup \{\lambda\}$ and $t \in \Gamma^*$, and (3) $r_m \in F$.

Remarks on the Definition

- Notice the machine is a generalization of an NFA not a DFA.
- One can show deterministic pushdown automata are a strictly weaker then nondeterministic pushdown automata.

Example

- We can define a machine to recognize $\{0^n1^n \mid n \ge 0\}$ as M=(Q, Σ , Γ , δ , q₁,\$, F) where: ٠ $Q = \{q1, q2, q3, q4\}$ $0, \lambda, 0$ $\Sigma = \{0,1\}$ $\Gamma = \{0, \$\}$ λ, λ, λ $F = \{q1, q4\}$ <u>q</u>1 and $\delta = \{(q1, \lambda, \lambda) \rightarrow (q2, \$), \}$ 1,0, λ $(q2, 0, \lambda) -> (q2, 0),$ $(q2, 1, 0) \rightarrow (q3, \lambda),$ 1,0, λ $(q3, 1, 0) -> (q3, \lambda)$ λ, \$, \$ $(q3, \lambda, $) --> (q4, \lambda)$ q4аЗ }
- Can then using the definition show this machine accepts 0011.

Equivalence

- We now works towards showing a language is context free if and only if some pushdown automata recognizes it.
- The proof split into two parts:
 - If a language is context-free then some pushdown automata recognizes it
 - If a pushdown automata recognizes some language then there is a context-free grammar that recognizes the same language.

CFL=> PDA recognizes

- Let A be a CFL. Let G be a CFG for this language, and let w be a string generated by G (and hence in A). We will have a machine with three main states $\{q_{start}, q_{loop}, q_{accept}\}$ together with some auxiliary states E.
 - 1. We have transitions $(q_{start}, \lambda, \lambda) \rightarrow (q_{loop}, S)$ that push the start variable S of the CFG onto our machine's stack.
 - 2. Then what we want to do is to simulate the steps to generate w on our PDAs stack.
 - a) If A is a variable of the CFG on the top fo the stack, and we are in the state q_{loop} we nondeterministically choose a rule A->w₁w₂..w_n and using a sequence of transitions $(q_{loop}, \lambda, A) \rightarrow (q_1, w_n), (q_1, \lambda, \lambda) \rightarrow (q_2, w_{n-1}) \dots$ $(q_n, \lambda, \lambda) \rightarrow (q_{loop}, w_1)$ We simulate this rule on the stack. Here q_i are some of the auxiliary states in E.
 - b) To handle a terminal such as b on the top of the stack we have transitions $(q_{loop}, b, b) \rightarrow (q_{loop}, \lambda)$.
 - 3. Finally, we have a transition $(q_{loop}, \lambda, \$) \rightarrow (q_{accept}, \$)$ where q_{accept} is our accept state.