PDASs

CS154
Chris Pollett
Mar 19, 2007.

Outline

e Pushdown Automata

 Equivalence

Pushdown Automata

e Our goal is a machine model corresponding CFG. This might help to develop
parsers.

e To do this we will consider machines that have a stack:

< Ja
Stack state p | Input
y control
|z b
o~ 9

* In a given state reading a given input symbol and a given stack symbol, the
machine can switch states, advance to the next character of the input, pop the
top symbol off the stack, or push a new symbol onto the stack.

e For instance, the language {0"1" | n>=0} could be recognized by such a
machine. When one reads an O push it onto the stack. When one starts reading
I’s, if one ever sees another O reject, also start popping 0’s off of the stack. If
when one gets to the end of the string the stack is empty, then accept.

AR I o

Formal Definition

A pushdown automaton is a 7-tuple M=(Q, X, T', 0, q,, z, F) where
Q is the set of states
2 is the input alphabet
I" is the stack alphabet
0: Q x CU{A}Y) x (TU{A})-->2@QxTU{A) ig the transition function
q,E€ Q 1is the start state, and
z€ I is the start of stack symbol
F C Q is the set of accept states.

M accepts w=w,w,...w_where each w. € ZU{A} if there is a sequence of
states 1, I, ..., I, in Q and a sequence of strings s, s, ..., s, in I'""such
that (1) r,= qq, Sy= 2, (2) for i =0,..., m-1, we have (r,, ,b) € 0(r,, w,, ,, a)
where s, = at and s,,,= bt for some a,b € TU{A} andt€ I'",and 3) r
€F.

Remarks on the Definition

* Notice the machine i1s a generalization of an
NFA not a DFA.

* One can show deterministic pushdown
automata are a strictly weaker then
nondeterministic pushdown automata.

Example

e We can define a machine to recognize {0"1"In>=0} as M=(Q, %, T, 0, q,,$, F) where:

Q={ql, g2, q3, g4}
$={0.1} O,A, O

o Mdad oy
F={ql, q4} @ 2

and 8={(ql, A, N)->(q2, $),
(q2’ 0’)\')">(q27 0)7
(q2’ 1’ 0)">(q3’ }\')7

(g3, 1,0)-->(q3, \) S $ 1,0, A

(q3, A, $)-->(q4, \)
}

e Can then using the definition show this machine accepts 0011.

Equivalence

* We now works towards showing a language
1s context free 1f and only if some
pushdown automata recognizes it.

* The proof split into two parts:

— If a language 1s context-free then some
pushdown automata recognizes it

— If a pushdown automata recognizes some
language then there 1s a context-free grammar
that recognizes the same language.

CFL=> PDA recognizes

Let A be a CFL. Let G be a CFG for this language, and let w be a string generated by
G (and hence in A). We will have a machine with three main states {qg..q;, op>
Qaccepty together with some auxiliary states E.

1. We have transitions (qg, A, M)-->(qjo0p, S) that push the start variable S of the
CFG onto our machine’s stack.

2. Then what we want to do is to simulate the steps to generate w on our PDAs
stack.

a) If Ais a variable of the CFG on the top fo the stack, and we are in the state
Qi00p We nondeterministically choose a rule A->w,w,..w, and using a
sequence of transitions (qy,,, » Ay A) =->(qy, W) 5 (), A A) =->(qp, W) -
(dp> Ay N) =->(qop Wy) We simulate this rule on the stack. Here g; are some
of the auxiliary states in E.

b) To handle a terminal such as b on the top of the stack we have transitions
(qloop ’b’ b) --> (qloop s 7\')
3. Finally, we have a transition (g, » As $) -=>(Gyecep $) Where g,y is OUr accept
state.

