
PDAs

CS154
Chris Pollett

Mar 19, 2007.

Outline

• Pushdown Automata
• Equivalence

Pushdown Automata

• Our goal is a machine model corresponding CFG. This might help to develop
parsers.

• To do this we will consider machines that have a stack:

• In a given state reading a given input symbol and a given stack symbol, the
machine can switch states, advance to the next character of the input, pop the
top symbol off the stack, or push a new symbol onto the stack.

• For instance, the language {0n1n | n>=0} could be recognized by such a
machine. When one reads an 0 push it onto the stack. When one starts reading
1’s, if one ever sees another 0 reject, also start popping 0’s off of the stack. If
when one gets to the end of the string the stack is empty, then accept.

state
control

a
b
b
a

Input
x
y
z

Stack

Formal Definition
• A pushdown automaton is a 7-tuple M=(Q, Σ, Γ, δ, q0, z, F) where

1. Q is the set of states
2. Σ is the input alphabet
3. Γ is the stack alphabet
4. δ: Q x (Σ∪{λ}) x (Γ∪{λ})-->2(Q x (Γ∪{λ})) is the transition function
5. q0∈ Q is the start state, and
6. z ∈ Γ is the start of stack symbol
7. F ⊆ Q is the set of accept states.

• M accepts w= w1w2…wn where each wi ∈ Σ∪{λ} if there is a sequence of
states r0, r1, …, rm in Q and a sequence of strings s0, s1, …, sm in Γ* such
that (1) r0= q0, s0= z, (2) for i =0,…, m-1, we have (ri+1,b) ∈ δ(ri, wi+1, a)
where si = at and si+1= bt for some a,b ∈ Γ∪{λ} and t ∈ Γ*, and (3) rm
∈F.

Remarks on the Definition

• Notice the machine is a generalization of an
NFA not a DFA.

• One can show deterministic pushdown
automata are a strictly weaker then
nondeterministic pushdown automata.

Example
• We can define a machine to recognize {0n1n | n>=0} as M=(Q, Σ, Γ, δ, q1,$, F) where:

Q={q1, q2, q3, q4}
Σ={0,1}
Γ={0,$}
F={q1, q4}
and δ={(q1, λ, λ)->(q2, $),
 (q2, 0, λ)-->(q2, 0),
 (q2, 1, 0)-->(q3, λ),
 (q3, 1, 0)-->(q3, λ)

 (q3, λ,$)-->(q4, λ)
 }

• Can then using the definition show this machine accepts 0011.

q1 q2

q3q4

λ, λ, λ

λ, $, $

0, λ, 0

1,0, λ

1,0, λ

Equivalence

• We now works towards showing a language
is context free if and only if some
pushdown automata recognizes it.

• The proof split into two parts:
– If a language is context-free then some

pushdown automata recognizes it
– If a pushdown automata recognizes some

language then there is a context-free grammar
that recognizes the same language.

CFL=> PDA recognizes
• Let A be a CFL. Let G be a CFG for this language, and let w be a string generated by

G (and hence in A). We will have a machine with three main states {qstart,qloop,
qaccept} together with some auxiliary states E.

1. We have transitions (qstart, λ , λ)-->(qloop, S) that push the start variable S of the
CFG onto our machine’s stack.

2. Then what we want to do is to simulate the steps to generate w on our PDAs
stack.

a) If A is a variable of the CFG on the top fo the stack, and we are in the state
qloop we nondeterministically choose a rule A->w1w2..wn and using a
sequence of transitions (qloop , λ, A) --> (q1, wn) , (q1, λ, λ) -->(q2, wn-1) …
(qn, λ, λ) -->(qloop, w1) We simulate this rule on the stack. Here qi are some
of the auxiliary states in E.

b) To handle a terminal such as b on the top of the stack we have transitions
(qloop ,b, b) --> (qloop , λ).

3. Finally, we have a transition (qloop , λ, $) -->(qaccept, $) where qaccept is our accept
state.

