Regular Grammars and Closure Properties of Regular Languages

CS154
Chris Pollett
Feb 19, 2007.

Outline

- Regular Grammars
- Closure Properties of Regular Languages

Grammars

- We now consider a different way to look at the regular languages based on grammars.
- A grammar is defined as a 4-tuple $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ where V is a finite set of variables, T is a finite set of terminal symbols, $S \in V$ is called the start variable, and P is a finite set of productions of the form v --> w where v is in $(\mathrm{V} \cup T)^{+}$and w is in $(\mathrm{VUT})^{*}$.
- For example, let $\mathrm{G}=(\{<$ sentence>, <noun>,<verb>\}, $\{d o g$, cat, walks, eats $\}$, <sentence>, P) where P is

```
<sentence> --> <noun> <verb>
```

<sentence> --> <noun> <verb> <noun>
<noun> --> dog | cat $\quad / *$ we are using | to abbreviate two line <noun> -->
dog and <noun> --> cat */
<verb> --> walks l eats
<noun><verb> --> <sentence>

- Beginning with the start variable, a grammar can yield or generate a string over the alphabet of terminals via a finite sequence of substitutions:
<sentence> ==> <noun> <verb> ==> dog <verb> ==> dog walks
We write <sentence> $==>^{*}$ dog walks to indicate from the string <sentence> we can get dog walks via a finite sequence of substitutions.
- We write $\mathrm{L}(\mathrm{G})$ for the set of strings generated by a grammar.

Regular Grammars

- A grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ is called right-linear if all its productions are of the form $A-->x B$ or $A-->x$ for some A, B in V and x in T^{*}.
- A grammar is called left-linear if all its productions are of the form A $-->B x$ or $A-->x$ for some A, B in V and x in T^{*}.
- A grammar is called regular if it is either left or right linear.
- For example, $G=(\{S\},\{a, b\}, S, P)$ where P contains $S-->a b S \mid \lambda$ is right linear. It generates the strings in (ab)*.
- For example, $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P})$ where P contains $\mathrm{S}-->\mathrm{Sab} \mid \mathrm{A}$, A--> Abal ba is left linear. It generates the strings in $(\mathrm{ba})^{+}(\mathrm{ab})^{*}$.
- The set of rules $\mathrm{S}-->\mathrm{A}, \mathrm{A}-->\mathrm{aBl} \lambda, \mathrm{A}-->\mathrm{Ab}$ are all linear (so could belong to a linear grammar). The second rule is right linear, and the third is left linear, so these rules together could not belong to either a right linear or left linear grammar.

Equivalence with Regular Languages

- Need to show every language generated by a regular grammar is regular and vice-versa.
- In class we will only look at right linear grammars, but a similar argument can be made for left linear grammars. To begin:
Theorem. Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a right linear grammar. Then $\mathrm{L}(\mathrm{G})$ is a regular language.
Proof. Let $\mathrm{V}=\left\{\mathrm{V}_{0}, . ., \mathrm{V}_{\mathrm{n}}\right\}$. Assume $\mathrm{S}=\mathrm{V}_{0}$. The alphabet of our NFA will be the set of terminals. The set of states of our NFA will consist of $\mathrm{V}_{0}, . ., \mathrm{V}_{\mathrm{n}}$ together with some auxiliary states and the state f which will be the unique accepting state. The start state will be V_{0}. The transition function δ will be based on the productions of G . A production $\mathrm{V}_{\mathrm{i}}-->\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m}} \mathrm{V}_{\mathrm{j}}$ will map to the sequence of states and transitions:

where the unlabelled states are auxiliary states. A production of the form $\mathrm{V}_{\mathrm{i}}-->$ $\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m}}$ is mapped to a set of transitions:

Given this description of the NFA, one can observe that $V_{0}==>^{*} w$ if and only if $\delta^{*}\left(V_{0}\right.$, $\mathrm{w})=\mathrm{f}$ and so if and only if w is accepted by the NFA.

Regular implies Regular Grammar

Theorem. If L is a regular language, then it is generated by some regular grammar.
Proof. Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \partial, \mathrm{q}_{0}, \mathrm{~F}\right)$ be a DFA for L . Assume $\mathrm{Q}=\left\{\mathrm{q}_{0}, \ldots, \mathrm{q}_{\mathrm{n}}\right\}$ and $\Sigma=\left\{\mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{m}}\right\}$. Let $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{S}, \mathrm{P})$ be the grammar with $\mathrm{V}=\left\{\mathrm{q}_{0}, \ldots\right.$, $\left.\mathrm{q}_{\mathrm{n}}\right\}$ and $\mathrm{S}=\mathrm{q}_{0}$ and where for each transition $\partial\left(\mathrm{q}_{\mathrm{i}}\right.$, $\left.a_{j}\right)=q_{k}$ we have the production $q_{i}-->a_{j} q_{k}$ and if q_{k} is in F we also have the production $\mathrm{q}_{\mathrm{k}}^{-->\lambda \text {. It is }}$ not hard to see that w is accepted by M iff it is generated by this right linear grammar.

Closure Properties

- Last day we argued that the regular languages are closed under union, concatenation and *.
- Today, we will look at some further closure properties.
- To begin...

Theorem. The regular languages are closed under complement.
Proof. A regular language L is accepted by some DFA $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \partial, \mathrm{q}_{0}, \mathrm{~F}\right)$. Let $\mathrm{M}^{\prime}=\left(\mathrm{Q}, \Sigma, \partial, \mathrm{q}_{0}, \mathrm{Q}-\mathrm{F}\right)$. This machine will accept precisely those strings in Σ^{*} which are not accepted by M. i.e., $\overline{\mathrm{L}}$.

Direct Product Construction for DFAs

Theorem. If A_{1} and A_{2} two regular languages, so is their intersection $A_{1} \cap A_{2}$.
Proof: Let $\mathrm{M}_{1}=\left(\mathrm{Q}_{1}, \Sigma, \delta_{1}, \mathrm{q}_{1}, \mathrm{~F}_{1}\right)$ and $\mathrm{M}_{2}=\left(\mathrm{Q}_{2}, \Sigma, \delta_{2}, \mathrm{q}_{2}, \mathrm{~F}_{2}\right)$ be the DFAs recognizing A_{1} and A_{2}. We would like make a new DFA, M, which simultaneously simulates both M_{1} and M_{2} and accepts a string w if both M_{1} and M_{2} accepts. To simulate both machines at the same time we use a socalled cartesian product construction. Let $\mathrm{Q}=\mathrm{Q}_{1} \times \mathrm{Q}_{2}$. M 's alphabet is Σ like that of M_{1} and M_{2}. Define $\delta\left(\left(\mathrm{q}, \mathrm{q}^{\prime}\right), \mathrm{a}\right)=$ $\left(\delta_{1}(q, a), \delta_{2}\left(q^{\prime}, a\right)\right)$. Let the start state be $\left(q_{1}, q_{2}\right)$. Finally, let $\mathrm{F}=\left(\mathrm{F}_{1} \times \mathrm{F}_{2}\right)$.
Corollary. If A_{1} and A_{2} two regular languages, so is $\mathrm{A}_{1}-\mathrm{A}_{2}$.
Proof. Notice $A_{1}-A_{2}=A_{1} \cap \bar{A}_{2}$.

Closure under Reversals

Theorem. If L is regular then so is $L^{R} .=\left\{w^{R} \mid w\right.$ is in L\}. Here w^{R} is w written backwards.
Proof. Let N=(Q, $\Sigma, \partial, \mathrm{s}, \mathrm{F})$ be an NFA for L. Recall from our proof that $\mathrm{L}(\mathrm{N})$ can be generated by a regular expression, that we can assume N has only one accept state f . Let N^{\prime} be the NFA obtained from N by making f the start state, s the only accept state, and for each transition $\partial(\mathrm{q}, \mathrm{a})=\mathrm{q}^{\prime}$ having instead the transition $\partial\left(\mathrm{q}^{\prime}, a\right)=\mathrm{q}$. This machine will recognize a string iff the reverse was in N .

