
Regular Grammars and Closure
Properties of Regular Languages

CS154
Chris Pollett
Feb 19, 2007.

Outline

• Regular Grammars
• Closure Properties of Regular Languages

Grammars
• We now consider a different way to look at the regular languages based on

grammars.
• A grammar is defined as a 4-tuple G=(V, T, S, P) where V is a finite set of

variables, T is a finite set of terminal symbols, S ∈ V is called the start
variable, and P is a finite set of productions of the form v --> w where v is in
(V∪T)+ and w is in (V∪T)*.

• For example, let G=({<sentence>,<noun>,<verb>}, {dog, cat, walks, eats},
<sentence>, P) where P is

<sentence> --> <noun> <verb>
<sentence> --> <noun> <verb> <noun>
<noun> --> dog | cat /* we are using | to abbreviate two line <noun> -->

dog and <noun> --> cat */
<verb> --> walks | eats
<noun> <verb> --> <sentence>

• Beginning with the start variable, a grammar can yield or generate a string
over the alphabet of terminals via a finite sequence of substitutions:

<sentence> ==> <noun> <verb> ==> dog <verb> ==> dog walks
We write <sentence> ==>* dog walks to indicate from the string <sentence> we can

get dog walks via a finite sequence of substitutions.
• We write L(G) for the set of strings generated by a grammar.

Regular Grammars
• A grammar G=(V, T, S, P) is called right-linear if all its productions

are of the form A --> xB or A--> x for some A, B in V and x in T*.
• A grammar is called left-linear if all its productions are of the form A

--> Bx or A-->x for some A, B in V and x in T*.
• A grammar is called regular if it is either left or right linear.
• For example, G=({S}, {a,b}, S, P) where P contains S--> abS | λ is

right linear. It generates the strings in (ab)*.
• For example, G=({S, A}, {a,b}, S, P) where P contains S--> Sab |A,

A--> Aba | ba is left linear. It generates the strings in (ba)+(ab)*.
• The set of rules S-->A, A--> aB| λ, A--> Ab are all linear (so could

belong to a linear grammar). The second rule is right linear, and the
third is left linear, so these rules together could not belong to either a
right linear or left linear grammar.

Equivalence with Regular Languages
• Need to show every language generated by a regular grammar is regular and vice-versa.
• In class we will only look at right linear grammars, but a similar argument can be made

for left linear grammars. To begin:
Theorem. Let G=(V, T, S, P) be a right linear grammar. Then L(G) is a regular language.
Proof. Let V={V0, .., Vn}. Assume S=V0. The alphabet of our NFA will be the set of

terminals. The set of states of our NFA will consist of V0, .., Vn together with some
auxiliary states and the state f which will be the unique accepting state. The start state
will be V0. The transition function δ will be based on the productions of G. A production
Vi --> a1 …am Vj will map to the sequence of states and transitions:

where the unlabelled states are auxiliary states. A production of the form Vi -->
a1 …am is mapped to a set of transitions:

Given this description of the NFA, one can observe that V0 ==>* w if and only if δ*(V0,
w) = f and so if and only if w is accepted by the NFA.

Vi Vj
a1

a2 am… am-1

Vi Fa1 …a2 am-1 am

Regular implies Regular Grammar

Theorem. If L is a regular language, then it is
generated by some regular grammar.

Proof. Let M = (Q, ∑, ∂, q0, F) be a DFA for L.
Assume Q={q0, …, qn} and ∑={a0, …, am}. Let
G=(V,∑, S, P) be the grammar with V={q0, …,
qn} and S= q0 and where for each transition ∂(qi,
aj) = qk we have the production qi --> ajqk and if qk
is in F we also have the production qk-->λ. It is
not hard to see that w is accepted by M iff it is
generated by this right linear grammar.

Closure Properties

• Last day we argued that the regular languages are closed
under union, concatenation and *.

• Today, we will look at some further closure properties.
• To begin…
Theorem. The regular languages are closed under

complement.
Proof. A regular language L is accepted by some DFA

M=(Q, ∑, ∂, q0, F). Let M´=(Q, ∑, ∂, q0, Q-F). This
machine will accept precisely those strings in ∑* which
are not accepted by M. i.e., L .

Direct Product Construction for DFAs
Theorem. If A1 and A2 two regular languages, so is

their intersection A1∩ A2.
Proof: Let M1=(Q1, Σ, δ1, q1, F1) and M2 =(Q2, Σ, δ2, q2, F2)

be the DFAs recognizing A1 and A2. We would like make
a new DFA, M, which simultaneously simulates both M1
and M2 and accepts a string w if both M1 and M2 accepts.
To simulate both machines at the same time we use a so-
called cartesian product construction. Let Q = Q1 x Q2. M’s
alphabet is Σ like that of M1 and M2. Define δ((q, q’), a) =
(δ1(q,a), δ2(q’,a)). Let the start state be (q1, q2). Finally, let
F = (F1 x F2).

Corollary. If A1 and A2 two regular languages, so is
A1 - A2.

Proof. Notice A1 - A2 = A1 ∩ A2.

Closure under Reversals

Theorem. If L is regular then so is LR.= {wR | w is in
L}. Here wR is w written backwards.

Proof. Let N=(Q, ∑, ∂, s, F) be an NFA for L. Recall
from our proof that L(N) can be generated by a
regular expression, that we can assume N has only
one accept state f. Let N´ be the NFA obtained
from N by making f the start state, s the only
accept state, and for each transition ∂(q, a) =q´
having instead the transition ∂(q´, a) =q. This
machine will recognize a string iff the reverse was
in N.

