Regular Grammars and Closure Properties of Regular Languages

CS154
Chris Pollett
Outline

• Regular Grammars
• Closure Properties of Regular Languages
Grammars

- We now consider a different way to look at the regular languages based on grammars.

- A **grammar** is defined as a 4-tuple $G=(V, T, S, P)$ where V is a finite set of **variables**, T is a finite set of **terminal** symbols, $S \in V$ is called the start variable, and P is a finite set of **productions** of the form $v \rightarrow w$ where v is in $(V \cup T)^+$ and w is in $(V \cup T)^*$.

- For example, let $G=(\{<sentence>, <noun>, <verb>\}, \{dog, cat, walks, eats\}, <sentence>, P)$ where P is

 - $<sentence> \rightarrow <noun> <verb>
 - $<sentence> \rightarrow <noun> <verb> <noun>
 - $<noun> \rightarrow dog \mid cat$ /* we are using \mid to abbreviate two line $<noun> \rightarrow$

 - dog and $<noun> \rightarrow cat */
 - $<verb> \rightarrow walks \mid eats$
 - $<noun> <verb> \rightarrow <sentence>

- Beginning with the start variable, a grammar can **yield** or **generate** a string over the alphabet of terminals via a finite sequence of substitutions:

 - $<sentence> \Rightarrow <noun> <verb> \Rightarrow dog <verb> \Rightarrow dog walks$

 We write $<sentence> \Rightarrow* dog walks$ to indicate from the string $<sentence>$ we can get dog walks via a finite sequence of substitutions.

- We write $L(G)$ for the set of strings generated by a grammar.
Regular Grammars

- A grammar $G=(V, T, S, P)$ is called **right-linear** if all its productions are of the form $A \rightarrow xB$ or $A \rightarrow x$ for some A, B in V and x in T^*.
- A grammar is called **left-linear** if all its productions are of the form $A \rightarrow Bx$ or $A \rightarrow x$ for some A, B in V and x in T^*.
- A grammar is called **regular** if it is either left or right linear.
- For example, $G=(\{S\}, \{a,b\}, S, P)$ where P contains $S \rightarrow abS \mid \lambda$ is right linear. It generates the strings in $(ab)^*$.
- For example, $G=(\{S, A\}, \{a,b\}, S, P)$ where P contains $S \rightarrow Sab \mid A$, $A \rightarrow Aba \mid ba$ is left linear. It generates the strings in $(ba)^+(ab)^*$.
- The set of rules $S \rightarrow A$, $A \rightarrow aB \mid \lambda$, $A \rightarrow Ab$ are all linear (so could belong to a **linear grammar**). The second rule is right linear, and the third is left linear, so these rules together could not belong to either a right linear or left linear grammar.
Equivalence with Regular Languages

- Need to show every language generated by a regular grammar is regular and vice-versa.
- In class we will only look at right linear grammars, but a similar argument can be made for left linear grammars. To begin:

Theorem. Let $G=(V, T, S, P)$ be a right linear grammar. Then $L(G)$ is a regular language.

Proof. Let $V=\{V_0, \ldots, V_n\}$. Assume $S=V_0$. The alphabet of our NFA will be the set of terminals. The set of states of our NFA will consist of V_0, \ldots, V_n together with some auxiliary states and the state f which will be the unique accepting state. The start state will be V_0. The transition function δ will be based on the productions of G. A production $V_i \rightarrow a_1 \ldots a_m V_j$ will map to the sequence of states and transitions:

\[
V_i \rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_{m-1} \rightarrow a_m \rightarrow V_j
\]

where the unlabelled states are auxiliary states. A production of the form $V_i \rightarrow a_1 \ldots a_m$ is mapped to a set of transitions:

\[
V_i \rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_{m-1} \rightarrow a_m \rightarrow F
\]

Given this description of the NFA, one can observe that $V_0 \Rightarrow^* w$ if and only if $\delta^*(V_0, w) = f$ and so if and only if w is accepted by the NFA.
Regular implies Regular Grammar

Theorem. If L is a regular language, then it is generated by some regular grammar.

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA for L. Assume $Q=\{q_0, \ldots, q_n\}$ and $\Sigma=\{a_0, \ldots, a_m\}$. Let $G=(V,\Sigma, S, P)$ be the grammar with $V=\{q_0, \ldots, q_n\}$ and $S= q_0$ and where for each transition $\delta(q_i, a_j) = q_k$ we have the production $q_i \rightarrow a_j q_k$ and if q_k is in F we also have the production $q_k \rightarrow \lambda$. It is not hard to see that w is accepted by M iff it is generated by this right linear grammar.
Closure Properties

• Last day we argued that the regular languages are closed under union, concatenation and \ast.
• Today, we will look at some further closure properties.
• To begin…

Theorem. The regular languages are closed under complement.

Proof. A regular language L is accepted by some DFA $M=(Q, \Sigma, \delta, q_0, F)$. Let $M´=(Q, \Sigma, \delta, q_0, Q-F)$. This machine will accept precisely those strings in Σ^* which are not accepted by M. i.e., \bar{L}.
Direct Product Construction for DFAs

Theorem. If A_1 and A_2 two regular languages, so is their intersection $A_1 \cap A_2$.

Proof: Let $M_1=(Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2=(Q_2, \Sigma, \delta_2, q_2, F_2)$ be the DFAs recognizing A_1 and A_2. We would like make a new DFA, M, which simultaneously simulates both M_1 and M_2 and accepts a string w if both M_1 and M_2 accepts. To simulate both machines at the same time we use a so-called cartesian product construction. Let $Q = Q_1 \times Q_2$. M’s alphabet is Σ like that of M_1 and M_2. Define $\delta((q, q'), a) = (\delta_1(q,a), \delta_2(q',a))$. Let the start state be (q_1, q_2). Finally, let $F = (F_1 \times F_2)$.

Corollary. If A_1 and A_2 two regular languages, so is $A_1 - A_2$.

Proof. Notice $A_1 - A_2 = A_1 \cap \overline{A}_2$.
Closure under Reversals

Theorem. If L is regular then so is $L^R = \{w^R \mid w \text{ is in } L\}$. Here w^R is w written backwards.

Proof. Let $N = (Q, \Sigma, \delta, s, F)$ be an NFA for L. Recall from our proof that $L(N)$ can be generated by a regular expression, that we can assume N has only one accept state f. Let N' be the NFA obtained from N by making f the start state, s the only accept state, and for each transition $\delta(q, a) = q'$ having instead the transition $\delta(q', a) = q$. This machine will recognize a string iff the reverse was in N.