Normal Forms and Parsing

CS154
Chris Pollett
Mar 14, 2007.



Outline

e Chomsky Normal Form
* The CYK Algorithm
e Greibach Normal Form



Chomsky Normal Form

 To get an efficient parsing algorithm for general CFGs it 1s
convenient to have them in some kind of normal form.

e Chomsky Normal Form is often used.

A CFG is in Chomsky Normal Form if every rule is of
the form A-->BC or of the form A-->a, where A,B.C are
any variables and a is a terminal. In addition the rule S--> A
1s permitted.



Conversion to Chomsky Normal
Form

Any CFL L can be generated by a CFG in Chomsky Normal Form

Proof Let G be a CFG for L. First we add a new start variable and rule S, -->S.
This guarantees the start variable does not occur on the RHS of any rule.
Second we remove any A -rules A--> A where A is not the start variable. Then
for each occurrence of A on the RHS of a rule, say R--> uAv, we add a rule R-
->uv. We do this for each occurrence of an A. So for R--> uAvAw, we would
add the rules R-->uvAw, R--> uAvw, R-->uvw. If we had the rule R-->A, add
the rule R--> A unless we previously removed the rule R--> A. Then we repeat
the process with R. Next we handle unit rule A--> B. To do this, we delete this
rule and then for each rule of the form B--> u, we add then rule A-->u, unless
this is a unit rule that was previously removed. We repeat until we eliminate
unit rules. Finally, we convert all the remaining rules to the proper form. For
any rule A-->uu, ... u, where k>=3 and each ui is a variable or a terminal
symbol, we replace the rule with A -->u A, A ->u, A,, ... A, -->u,_u,.
For any rule with k=2, we replace any terminal with a new variable U. and a
rule U, -->u..



Example

Use the algorithm to convert: S--> Aba, A-->aab, B--> Ac to Chomsky

Normal Form

— Step 1: Add new start variable to get:
* S,)-->S, S--> Aba, A-->aab, B-->Ac
— Step 2: Remove A rules. In this case, there aren’t any so we still have:
* S,)-->S, S--> Aba, A-->aab, B-->Ac
— Step 3: Remove unit rules. Only have one, involving S,,.
e S,--> Aba, S--> Aba, A-->aab, B-->Ac
— Step 4: Split up rules with RHS of length longer than 2:
* So—>AC,, C,-->ba, S--> AD,, D,-->ba, A-->aE,, E-->ab, B-->Ac
— Step 5: Put each rule with RHS of length 2 into the correct format:

e Sp—>AC,,

e Ci->B/A;,B,->b,A|-->a,
e S-->AD,,

e D->B,A,,B,-->b, A,-->a,
e A->AE,A;-->a

e E,->A,B,,B,-->b,A,-->a,
* B->AC,, C,-->c

«— The answer



Introduction to Cocke-Y ounger-
Kasami (CYK) algorithm (1960)

e This is an O(n?) algorithm to check if a string w is can be
generated by a CFG in Chomsky Normal Form.

e As cubic algorithms tend to be slow, in practice people use
algorithms based on restricted types of CFGs with a fixed
amount of lookahead. Either top down LL parsing or

bottom-up LR parsing. These algorithms are based on the
PDA model.

e There have been improvements to CYK algorithm which
reduce the run-time slightly below cubic (n?>?) and to
quadratic in the case of an unambiguous grammar.



The CYK algorithm

. The idea is to build a table such that table(i,j) contains those variables that
can generate the substring of w start at location i until location j.

Algorithm:
On input w=w w,...w_:

1. Ifw=¢andS--> ¢ is arule accept.

2. Fori=1 ton: [set up the substring of length 1 case]

3. For each variable A:

4. Test whether A-->Db is a rule, where b=w;,

5. If so, place A in table(i,1).

6. For/=2ton: [Here /is alength of a substring]

7. Fori=1ton- [+ 1: [iis the start of the substring]

8. Letj=1+1[-1,[jis the end of the substring]

0. For k =1to j-1: [k is a place to split substring]

10. For each rule A-->BC

11. If table(i,k) contains B and table(k+1, j) contains C put A

in table(i,)).
12. If S is in table(1,n) accept. Otherwise, reject.



Example

Consider the context free grammar S-->AT, S-->c, T-->SB, A-->a, B-->b.

Let’s look at the steps CYK would do to check if aacbb was in the language.
We’ll abbreviate table(i,j) as T(i,))

First, lines 2-5 would be used to set T(1,1) = {A}, T(2,2) = {A}, T(3,3) = {S},
T4,4)={B}, T(5,5) = {B}.

The [=2 pass of lines 8-11 then fills in the table for substrings of length 2. We
get T(1,2)={}, T(2,3)={}, T(3,4) = {T}, T(4,5) ={}. Notice we added T to
T(3,4) because T(3,3) was {S} and T(4,4) was {B} and we have a rule T--
>SB.

The /=3 pass of lines 8-11 then fill is the table for substrings of length 3. We
get T(1,3)={}, T(2,4)={S}, T(3,5)={}. Here T(2,4)={S}, since T(2,2)={A}
and T(3,4)={T} and we have the rule S--> AT

The [=4 pass of lines 8-11 then fill is the table for substrings of length 4. We
get T(1,4)={} and T(2,5)={T}. This follows as T(2,4)={S} and T(5,5)={B}
and T-->SB.

Finally, when the [=5 pass of lines 8-11 then fill is the table for substrings of
length 5. i.e., the whole string aacbb. In this case, T(1,5)={S} since
T(1,1)={A} and T(2,5)={T} and we have the rule S-->AT. As T(1,5) has the
start variable we know the string aacbb is generated by the whole grammar.



Greibach Normal Form

A CFQG is said to be in Greibach Normal Form if all productions are of the
form A-->ax where a is a terminal and x is a string of variables (possibly the
empty string).

It turns out that any CFG is equivalent to one in Greibach Normal Form.

Notice unlike an s-grammar, a grammar in Greibach Normal Form is allowed
to have multiple rules with the same (A, a).

Greibach Normal Form is interesting for two reasons: (1) it can be used in
proofs of equivalences of CFL with those languages recognized by a certain
type of automaton with a stack. (2) it also gives a slightly different upper
bound on the time/space needed to parse a string in a CFG.

To see notice, a string is generated by a a CFG in Greibach Normal Form then
as each rule consumes one string letter, the derivation will be of linear length.

The brute force algorithm on this string might still take exponential time since
if we are currently reading an a, there might be several applicable rules.

However, as all particular derivations are of linear length, the algorithm is a
linear space algortihm.

Further, if we could nondeterministically guess which rule to apply, we could
find verify a derivation in linear time. This shows the context free languages
are in nondeterministic linear time.



Example Converting to Greibach Normal
Form

Consider the CFG S-->abSblaa.

To convert to GNF we introduce new variables A, B with rules A-->a
and B-->b.

The the grammar
S-->aBSBlaA
A-->a
B-->b
is in GNF.



