
Normal Forms and Parsing

CS154
Chris Pollett

Mar 14, 2007.

Outline

• Chomsky Normal Form
• The CYK Algorithm
• Greibach Normal Form

Chomsky Normal Form

• To get an efficient parsing algorithm for general CFGs it is
convenient to have them in some kind of normal form.

• Chomsky Normal Form is often used.
• A CFG is in Chomsky Normal Form if every rule is of

the form A-->BC or of the form A-->a, where A,B,C are
any variables and a is a terminal. In addition the rule S--> λ
is permitted.

Conversion to Chomsky Normal
Form

Any CFL L can be generated by a CFG in Chomsky Normal Form
Proof Let G be a CFG for L. First we add a new start variable and rule S0 -->S.

This guarantees the start variable does not occur on the RHS of any rule.
Second we remove any λ -rules A--> λ where A is not the start variable. Then
for each occurrence of A on the RHS of a rule, say R--> uAv, we add a rule R-
-> uv. We do this for each occurrence of an A. So for R--> uAvAw, we would
add the rules R-->uvAw, R--> uAvw, R--> uvw. If we had the rule R-->A, add
the rule R--> λ unless we previously removed the rule R--> λ. Then we repeat
the process with R. Next we handle unit rule A--> B. To do this, we delete this
rule and then for each rule of the form B--> u, we add then rule A-->u, unless
this is a unit rule that was previously removed. We repeat until we eliminate
unit rules. Finally, we convert all the remaining rules to the proper form. For
any rule A--> u1u2 … uk where k>=3 and each ui is a variable or a terminal
symbol, we replace the rule with A --> u1A1, A1 --> u2 A2, … Ak-2 --> uk-1uk.
For any rule with k=2, we replace any terminal with a new variable Ui and a
rule Ui --> ui.

Example
• Use the algorithm to convert: S--> Aba, A-->aab, B--> Ac to Chomsky

Normal Form
– Step 1: Add new start variable to get:

• S0-->S, S--> Aba, A-->aab, B-->Ac
– Step 2: Remove λ rules. In this case, there aren’t any so we still have:

• S0-->S, S--> Aba, A-->aab, B-->Ac
– Step 3: Remove unit rules. Only have one, involving S0.

• S0--> Aba, S--> Aba, A-->aab, B-->Ac
– Step 4: Split up rules with RHS of length longer than 2:

• S0--> AC1, C1-->ba, S--> AD1, D1-->ba, A-->aE1, E1-->ab, B-->Ac
– Step 5: Put each rule with RHS of length 2 into the correct format:

• S0--> AC1,
• C1-->B1A1 , B1 -->b, A1 --> a,
• S--> AD1,
• D1--> B2A2 , B2 -->b, A2 --> a,
• A-->A3E1, A3 --> a
• E1--> A4 B4, B4 -->b, A4 --> a,
• B-->AC2 , C2 -->c

The answer

Introduction to Cocke-Younger-
Kasami (CYK) algorithm (1960)

• This is an O(n3) algorithm to check if a string w is can be
generated by a CFG in Chomsky Normal Form.

• As cubic algorithms tend to be slow, in practice people use
algorithms based on restricted types of CFGs with a fixed
amount of lookahead. Either top down LL parsing or
bottom-up LR parsing. These algorithms are based on the
PDA model.

• There have been improvements to CYK algorithm which
reduce the run-time slightly below cubic (n2.8) and to
quadratic in the case of an unambiguous grammar.

The CYK algorithm
• The idea is to build a table such that table(i,j) contains those variables that

can generate the substring of w start at location i until location j.
Algorithm:
On input w= w1w2…wn :

1. If w = ε and S--> ε is a rule accept.
2. For i = 1 to n: [set up the substring of length 1 case]
3. For each variable A:
4. Test whether A--> b is a rule, where b=wi
5. If so, place A in table(i,i).
6. For l = 2 to n: [Here l is a length of a substring]
7. For i = 1 to n - l + 1: [i is the start of the substring]
8. Let j = i + l - 1, [j is the end of the substring]
9. For k = i to j-1: [k is a place to split substring]
10. For each rule A-->BC
11. If table(i,k) contains B and table(k+1, j) contains C put A

in table(i,j).
12. If S is in table(1,n) accept. Otherwise, reject.

Example
• Consider the context free grammar S-->AT, S-->c, T-->SB, A-->a, B-->b.
• Let’s look at the steps CYK would do to check if aacbb was in the language.
• We’ll abbreviate table(i,j) as T(i,j)
• First, lines 2-5 would be used to set T(1,1) = {A}, T(2,2) = {A}, T(3,3) = {S},

T(4,4) = {B}, T(5,5) = {B}.
• The l=2 pass of lines 8-11 then fills in the table for substrings of length 2. We

get T(1,2)={}, T(2,3)={}, T(3,4) = {T}, T(4,5) ={}. Notice we added T to
T(3,4) because T(3,3) was {S} and T(4,4) was {B} and we have a rule T--
>SB.

• The l=3 pass of lines 8-11 then fill is the table for substrings of length 3. We
get T(1,3)={}, T(2,4)={S}, T(3,5)={}. Here T(2,4)={S}, since T(2,2)={A}
and T(3,4)={T} and we have the rule S--> AT

• The l=4 pass of lines 8-11 then fill is the table for substrings of length 4. We
get T(1,4)={} and T(2,5)={T}. This follows as T(2,4)={S} and T(5,5)={B}
and T-->SB.

• Finally, when the l=5 pass of lines 8-11 then fill is the table for substrings of
length 5. i.e., the whole string aacbb. In this case, T(1,5)={S} since
T(1,1)={A} and T(2,5)={T} and we have the rule S-->AT. As T(1,5) has the
start variable we know the string aacbb is generated by the whole grammar.

Greibach Normal Form
• A CFG is said to be in Greibach Normal Form if all productions are of the

form A-->ax where a is a terminal and x is a string of variables (possibly the
empty string).

• It turns out that any CFG is equivalent to one in Greibach Normal Form.
• Notice unlike an s-grammar, a grammar in Greibach Normal Form is allowed

to have multiple rules with the same (A, a).
• Greibach Normal Form is interesting for two reasons: (1) it can be used in

proofs of equivalences of CFL with those languages recognized by a certain
type of automaton with a stack. (2) it also gives a slightly different upper
bound on the time/space needed to parse a string in a CFG.

• To see notice, a string is generated by a a CFG in Greibach Normal Form then
as each rule consumes one string letter, the derivation will be of linear length.

• The brute force algorithm on this string might still take exponential time since
if we are currently reading an a, there might be several applicable rules.

• However, as all particular derivations are of linear length, the algorithm is a
linear space algortihm.

• Further, if we could nondeterministically guess which rule to apply, we could
find verify a derivation in linear time. This shows the context free languages
are in nondeterministic linear time.

Example Converting to Greibach Normal
Form

• Consider the CFG S-->abSb|aa.
• To convert to GNF we introduce new variables A, B with rules A-->a

and B-->b.
• The the grammar

S--> aBSB|aA
A--> a
B-->b
is in GNF.

