
Conversions and Regular
Expressions

CS154
Chris Pollett
Feb 14, 2007.

Outline

• Regular Expressions

Regular Expressions
• In arithmetic, we can use the operations + and * to build up

expressions such as:
(5 + 3) * 4.

• Similarly we can use the regular operations to build up expressions
describing regular languages.

• For instance, 0(0∪1)* (We use juxtaposition to abbreviate
concatenation: 0ο(0∪1)*).

• This means the language which results from concatenating the
language containing 0 with the language of (0∪1)*. This in turn is the
star of the union of the two languages one containing just 0; the other
containing just 1.

• These kind of expressions are used in many modern programming
languages: Perl, PHP, Java, AWK, GREP

Formal Definition of a Regular
Expression

• We say that R is a regular expression if R is
1. a for some symbol a in the alphabet ∑,
2. ε (notice we are using ε but the book uses λ)
3. ∅
4. (R1 ∪R2) where R1 and R2 are regular expressions. The book

writes (R1 + R2) for this case, + is also used by JFLAP.
5. (R1 ο R2) where R1 and R2 are regular expressions
6. (R1)* where R1 is a regular expression

• We write R+ as a shorthand for RR*.
• We write L(R) for the language given by the regular

expression

Examples of the Definition

• 0*1 0* = {w | w contains a single 1}
• (01 ∪ 10) = {01, 10}
• (∑∑)* = {w| w is of even length}
• (ε ∪0)(ε ∪1) = {ε, 0, 1, 01}
• 1* ∅ = ∅
• ∅* = {ε}

Equivalence with Finite
Automata

• We want to show that a language is regular
if and only if some regular expression
describes it.

• We will do this in two steps:
– Prove if a language is described by a regular

expression, then it is regular
– Prove if a language is regular, then it is

described by a regular expression.

Proof that regular expression
implies regular

• The proof is by induction on the complexity (number of
uses of union, *, or concatenation) of the regular
expression. In the base case, we have regular expressions
which make no use of union, *, or concatenation.

1. Let R= a for some a in ∑. Then the following NFA
recognizes the languages contain only a.

2. Let R= ε. Then the following NFA recognizes it:

3. Let R= ∅. Then the following NFA recognizes it:

a

Proof cont’d
• Assume now the result holds for languages for which the total number of

uses of union, *, or concatenation is at most n. Consider R a regular
language of complexity n+1. There are three cases to consider:

1. R is of the form (R1 ∪R2) where R1 and R2 are regular expressions of
complexity ≤n. By induction let N1 and N2 be the machines for R1 and R2.
Define N for R as:

2. (R1 ο R2) where R1 and R2 are regular expressions of complexity ≤n. By
induction let N1 and N2 be the machines for R1 and R2. Define N for R as:

3. (R1)* where R1 is a regular expression of complexity ≤n. By induction let
N1 be the machines for R1. Define N for R as:

N1

N2

N ε

ε

N
ε
ε

N ε

ε

ε

N1

N2

N1

Proof that regular implies the
language of some regular

expression
• We will split the proof into two parts:

– We first define a new kind of finite automata called a
generalized nondeterministic finite automata (GNFA)
and show how to convert any DFA into a GNFA.

– Then we show how to convert any GNFA into a regular
expression.

• To begin we define a GNFA to be an NFA where
we allow transition arrows to have any regular
expression as labels:

a*b

Converting DFAs to GFNA
• We will be interested in GNFAs that have the following special form:

– The start state has transition arrows to every other state but no arrows
coming in from other states.

– There is a single accept state, and it has arrows coming in from every
other state but no arrows going to any other state.

– Except for the start and accepts state, one arrow goes from from every
state to every other state and also from each state to itself.

• To convert a DFA into a GNFA, we add a new start state with and ε arrow to
the old start state and a new accept state with ε arrows from the old accept
states.

• If any arrows have multiple labels (or if we have two or more arrows between
the same two states) we replace each with a single label whose label is the
union labels of the these arrows.

• Finally, we add arrows with labels ∅ between states which had no labels so as
to satisfy the remaining conditions of our special form.

Converting GNFAs to Regular
expressions

• Our conversion above gives a GNFA with k >= 2 states.
• If k > 2, we will construct an equivalent GNFA with k-1 states.
• To do this we pick some state qrip other than the start or accept state,

and we will rip it out of the machine.
• To compensate for the loss of this state, for any pair of states qi, qj. in

this new machine we replace δ(qi, qj) with:
δ’(qi, qj) =(R1)(R2)*(R3)∪(R4)
where δ(qi, qrip) = R1; δ(qrip, qrip) = R2; δ(qrip, qj) = R3; δ(qi, qj) = R4

• This machine will be equivalent to the old machine.
• Further, by repeatedly ripping out states in this fashion we can get

down to the 2-state machine with just a regular expression on the
single transition between these two states.

• This regular expression will be equivalent to the original NFA.

A Corollary

The regular languages are closed under union, *, and
concatenation.

Proof. The regular languages are precisely those
recognized by DFAs. We have shown in turn that
the languages recognized by DFAs are precisely
those recognized by NFAs, and these in turn are
precisely the languages recognized by regular
expression. As the languages of regular
expressions are trivially closed under these
operations, we get the regular languages are
closed under these operations.

