
Normal Forms

CS154
Chris Pollett

Mar 12, 2007.

Outline

• s-grammars
• Methods for transforming grammars
• Chomsky Normal Form

s-grammars
• Last day we gave a brute force algorithm for checking if a string could be

generated by a CFG.
• It had a worst case exponential run-time.
• We would like parsing algorithms which run in linear time.
• One way to achieve this is to restrict the kind of grammars we consider:
Definition. A context-free grammar G=(V, T, S, P) is said to be a simple

grammar or s-grammar if all its productions are of the form:
A--> ax

where A is in V, a is in T, x is in V*, and any pair (A,a) occurs at most once in
P.

• For example, S-->aS|bSS|c is an s-grammar, but S-->aS|bSS|aSS|c is not
because (S,a) occurs in S-->aS and S-->aSS.

• Our brute force parsing algorithm will run in linear time with an s-grammar
since at any given step there is at most one production which can be used.
Further since the right hand side of a production always starts with a terminal
we match at least one character of the input with each substitution.

• So after at most linearly many substitution we know if the string is in the
language.

• s-grammars tend to be too restrictive to specify practical programming
languages; nevertheless, they show the form of the rule is important to get
efficient parsers.

Methods for Transforming Grammars

• We are now going to work towards some normal forms which will be
useful in obtaining parsing algorithms for general CFGs.

• To do this we will look at different ways to simplify our grammars.
• To start sometimes it is useful to get rid of the empty string from our

language in order to make our proofs easier. It turns out this won’t
cause a loss of generality in the statements we can say about CFGs.

• To see this, suppose L is a language and let L´= L -{λ}.
• If G´=(V,T,S,P) is a CFG for L´, then G = (V,T,S0,P∪{S0-->S |λ } will

be a CFG for L.
• So we will for now restrict our attention to grammars without λ.

More Methods of Transforming
Grammars

• Suppose we have a CFG G=(V,T,S,P) and let A--> x1Bx2 be in P. Suppose the variable
B occurs in the following productions in G: B -->y1| y2|.. |yn. Then if G´ is the CFG
obtained by replacing A--> x1Bx2 by A--> x1y1x2 | x1y2x2 |.. | x1ynx2, we will have
L(G´)=L(G).

Definition. Let G=(V,T,S,P) be a CFG. A variable A in V is said to be useful iff there is at
least one w in L(G) such that S=>* xAy=>*w. Otherwise, A is said to be useless. A
production is useles if it involves any useless variables.

• For example, S-->A, A--> aA| λ, B-->bA. Then B is useless as it is not reachable from
the start variable. So the production B-->bA is useless.

• Given a CFG if we eliminate all its useless productions we still get a smaller CFG with
the same language.

• To determine the useful variables and productions we can start with V1 = empty set.
Then repeat the following until there are no more variables added to V1: For each
production A-->x1 .. xn, with all xi’s that are variables in V1 , add A to V1. If the start
variable is not in V1 then we no the language is empty, so we can delete all productions.

• Otherwise, if S is in V1, it still might not be the case that every variable in V1 is useful,
so we set V2= {S}. Then repeat the following until there are no more variables added to
V2: For each production A-->x1 .. xn, with all xi’s that are variables in V1 and with add A
to V2, add each variable on the left hand side to V2. After this procedure terminates, take
V2 to be the set of useful variables. All other variables and production they are involved
in are useless.

Removing λ-rules/productions
• A production (rule) of a CFG of the form A--> λ is called a

λ-production or λ-rule. Any variable for which A=>* λ, is called
nullable.

• Even though a CFG might generate a language not containing λ, it still
might have nullable productions. In which case these productions can
be removed.

• For example, in S--> aCb, C-->aCb| λ, the variable C is nullable. We
can eliminate the λ-rule by doing substitutions to get: S--> aCb|ab, C--
>aCb| ab.

• To find the set N of nullable variables of a CFG, we can first put all
variables A which occur in productions of the form A--> λ into N.
Then repeat until no new variables are added the following step: if B
occurs in a production B-->A1A2..An where each Ai is in N, then add B
to N.

• Once we have the set of nullable variables, we can eliminate any λ-
rules from our grammar and for each rule C-->C1C2..Cn where a nullable
variables occur add a rule with each possible substitution of a nullable variable
by λ.

Eliminate Unit Productions

• A unit production is a production of the form A--> B.
• In general, using the reachability algorithm we can

determine if A=>*C for any two variables A and B.
• If C occurs in the rules C--> y1|y2| ..|yn, then we can add

the rule A --> y1|y2| ..|yn to our grammar without effecting
the strings it generates. If we do this for all variables
involved on the right hand side of a unit rule and for each
C for which A=>*C, then we have eliminated unit rules.

Chomsky Normal Form

• To get an efficient parsing algorithm for general CFGs it is
convenient to have them in some kind of normal form.

• Chomsky Normal Form is often used.
• A CFG is in Chomsky Normal Form if every rule is of

the form A-->BC or of the form A-->a, where A,B,C are
any variables and a is a terminal. In addition the rule S--> λ
is permitted.

