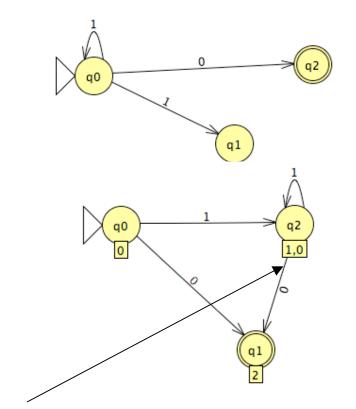
#### **Conversions and Minimization**

CS154 Chris Pollett Feb 12, 2007.

## Outline

- NFA to DFA Conversion
- State Minimization


# Equivalence of NFAs and DFAs

- **Theorem** Any language recognized by an NFA is recognized by some DFA.
- **Proof**: Given an NFA N= (Q,  $\Sigma$ ,  $\delta$ , q, F) we want to simulate how it acts on a string w with a DFA, M= (Q',  $\Sigma$ ,  $\delta'$ , q', F'). The idea is we want to keep track of what possible states it could be in after reading the first m characters of w. Let Q'= P(Q). The alphabet is the same. For each R∈Q' and a ∈  $\Sigma$ , let  $\delta'$  (R,a) = {q ∈Q | q ∈ E( $\delta(r,a)$ ) for some r ∈R}. Here E(q') is the set of states reachable from q' following only  $\varepsilon$  transitions. Let q'=E(q). Let F' = {R ∈Q'| R contains an accept state of N}.

#### Example Conversion

• Here is an initial NFA

- Here is the result of the conversion, where unreachable states have been removed
- JFLAP let's you step through the conversion process



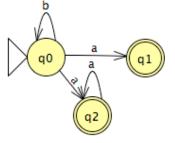
•The subscript beneath a state after the

conversion corresponds to a set of states from the original NFA

## State Minimization

- We say two states p,q of a DFA M are **indistinguishable** if  $\delta^*(p,w) \in F$  implies  $\delta^*(q,w)$  $\in F$  and  $\delta^*(p,w) \notin F$  implies  $\delta^*(q,w) \notin F$ .
- Otherwise, p,q are said to be **distinguishable**.
- Let p ~<sub>I</sub>q, if p and q are indistinguishable. Notice this is an equivalence relation.
- We now present an algorithm to find the minimal DFA equivalent to M.
- The idea is to first compute the equivalence classes of the indistinguishable equivalence relation. Then make one state for each equivalence class, and make an appropriate new transition function.

# Procedure for Equivalence Classes


- 1. Remove all inaccessible states. This can be done by check for each state if there is a simple path from the start state to it.
- 2. Consider all pairs (p,q). If  $p \in F$  but  $q \notin F$  or vice versa, then mark the pair (p,q) distinguishable.
- 3. Repeat until no previously unmarked pairs are marked:
  - a) For all pairs (p,q) and all  $a \in \Sigma$ , compute  $\delta(p,a) = p_a$  and  $\delta(q,a) = q_a$ . If the pair  $(p_a,q_a)$  is marked as distinguishable, mark (p,q) as distinguishable.

#### Procedure to Build Minimal Automaton

- 1. Use procedure of last slide to generate state equivalence classes for original automata.
- 2. For each equivalence class  $[p] = \{q \mid p \sim_I q\}$  create a new state.
- 3. For each transition rule  $\delta(r,a)$ =s of the original machine, add a transition  $\delta([r],a)$ =[s].
- 4. The initial state of the new machine is  $[q_0]$  where  $q_0$  was the state of the machine we are trying to minimize.
- 5. The final states of the new machine is the set  $\{[f] | f \in F\}$ .

## Example

• Consider the NFA:



• In class will go over example