
Transducers, Building Bigger
Turing Machines

CS154
Chris Pollett

Apr 11, 2007.

Outline

• Transducers
• Ways of Building Larger Turing Machines
• The Church-Turing Thesis

Transducers

• On Monday, we defined what it means for a TM to recognize and to
decide a language.

• Another useful thing that we can do with a Turing Machine is to
compute functions. We call these kinds of TMs tranducers.

• For example, we might need to compute a function to convert the
problem of deciding membership for one language into the problem of
deciding membership in another language.

• We say a function f with domain D is computable, if there is some
TM M which when started on inputs w from D, halts with f(w) on the
tape.

• We will give in a moment a TM which on w computes w_w. The book
shows how + and * can be computed on a TM.

Ways of Building Larger Turing
Machines

• We now turn our attention briefly to how to build
larger Turing Machines from little Turing
Machines.

• You can think of this process as very much like
building larger and larger functions starting with
little functions.

A Simple Turing Machine
• The transition function is the most important part of a

TM’s description.
• We will sometimes use a graphical notation to describe

TM’s and in particular this function.
• Given a in ∑ define a machine Ma ={{s,h}, ∑, ∑ ∪{_}, ∂,

s, {h}}, where for each b in ∑ ∪{_}, ∂(s,b) = (h, a, R).
• That is, if a is a symbol, the only thing Ma does is write

that symbol, move right, and halt.
• Similarly, if a is L or R we can build a machine such that

the only thing Ma does is either move one square left or
right.

Building Bigger TMs
• Given three TMs with a common alphabet: M, N, P, we can build a

new machine M´ which operates as follows:
– Start in the initial state of M; operate as M until M would halt, then
– if the currently scanned symbol is an b, start N
– if the currently scanned symbol is an a, start P.
– halt otherwise.

• Diagrammatically we write:
• As an exercise you should work out

what M´’s transition function would look like.
• This shows TMs can do if-then-else statements
• If one of N or P was instead a loop back to M we would have a while-

loop. Hence, it should become clear we are starting to be able to
simulate many programming language constructs.

M N

P

a
b

More on Diagrams

• Similar to the if-else type diagram of the last slide we can
have diagrams like:
M ----> N
Notice there is no label on the arrow. This means that if machine M is

about to transition to its halt state h we instead have it transition to
the start state of N.

• We can also generalize the two branch construction of the
previous slide to any fixed finite number of branches. This
would allow us to simulate switch-case like commands.

Examples

• We sometimes abbreviate MR as R and Ma as a.
We might also make abbreviations like Ra for the
machine which does MR, then reading any symbol
writes an a. Similarly, we might have RR or La.

• Let !a denote all the symbols in ∑ except a.
• Here is a machine R_ that scans right to the first

space >R
• Here is a machine L_ that scans left to the first

space >L

!_

!_

More Examples

• Here is a machine which when started with
a string w on the tape halts with w_w on the
tape.

>L_ R

_

 R_

a !=_
(R)2a(L_)2a

do twice

JFLAP

• JFLAP supports building larger machines out of smaller
machines.

• If one clicks on the Turing Machine button in JFLAP, one
can start building a Turing Machine.

• The two rightmost buttons:

Allow one to respectively import Turing Machines you’ve already
created as building blocks, and allow you to set up transitions
between Turing Machines.

JFLAP Example
• For example, recall that on Monday we built a machine in JFLAP that

converts strings over a’s and b’s into one over just b’s.
• It finishes with the tape head on the rightmost symbol.
• We can combine this machine with a machine to “rewind the tape” to

finish with the tape head on the leftmost symbol:

The Church Turing Thesis
• This thesis is that any computational process that can be

effectively carried out on a real-world computational
device can be simulated by a Turing Machine.

• Since you can always come up with new computational
devices, it is not something you can prove.

• However, so far no one since it was proposed in the 1940s
has come up with a model which is both physically
implementable which cannot be simulated by a Turing
Machine.

• Over the next week, we will look at some of the models
that have been considered.

• These include: multi-tape variants of Turing Machines,
multi-stack PDAs, RAMs (computers with machine code
instructions), cellular automata, lambda calculus (based on
functional programming approaches like in LISP or
scheme), rewrite systems, classical and quantum physics
based processes, etc.

