Yet More Undecidable
Languages

CS154
Chris Pollett
May 9, 2007.

Outline

 Emptiness Testing (reductions to a co-r.e. set)

e Reductions via Computation Histories

Reductions from a co-R.E. Set

Using reducibility is the most common way to show a language is
undecidable.

As another example, consider the language:

Ery={<M>1Mis a TM and L(M)=4.

Theorem. E, is undecidable.

Proof. First consider the following machine:

M1=“On input x:

1. If x # w, reject.

2. If x =w, run M on input w and accept if M does.”

This machine is a modification of M and it accepts at most one input w, and
it only accepts this if M does. Now suppose machine R decided Ey. Then
we could build the following machine to decide A, giving a contradiction:
S =“On input <M,w>, an encoding of a TM M and a string w:

1. Use the description of M and w to make a corresponding machine

M1 as above.

2. Run R on input <M1>

3. If R accepts, reject; if R rejects, accept.”

In this example, the map <M,w> --> <M1> can be computed by a TM, and it
reduces A to Eqy

Reductions via Computation
Histories

Consider the following language:

R :={<w,M, x> | w is the code of a sequence of configurations, beginning
with a start configuration of M on X, where each configuration yields the
next according to the transition table of TM M on input x. Further, the last
configuration is accepting.}

This language 1s decidable (we check whether the first configuration
does match a starting configuration of M on x, then we examine pairs
of adjacent configurations and see if one follows from the other, etc).

Notice Apy := {<M, x> 3w <w,M, x> ER }.
The string w in the above can be viewed as a computation history.

Such histories are often useful in doing reductions from one problem
to another.

Formal Definition of a
Computation History.

e Let M be aTM and x an input string.

e An accepting computation history for M on x is a
sequence of configurations C,,.., C,, where C, 1s the start
configuration of M on x, C, 1s an accepting configuration of
M, and each C, legally follows from C; ; according to the
rules of M.

* A rejecting computation history for M is defined
similarly, except that C,, 1s a rejecting configuration.

I .inear Bounded Automata

We will next work towards using Computation Histories to
give undecidability proofs.

Our first example will involve a new machine model which
has strength between a PDA and a TM.

A linear bounded automata (LBA) is a restricted type of
TM wherein the tape head isn’t permitted to move off the
portion of the tape containing the input.

If an LBA tries to move off this part of the tape to the
right, the tape head stays where it is.

Strength of LBAS

* One can verity that each of the TMs we gave for

the languages Apga, Acpgs Eppas and Eqpg are
either LBAs or easily modified into LBAs.

* For example, Erg iInvolved marking each
terminal, then marking a variable A 1f it appear in
a A--> B,...B, and the B,’s had already been
marked. Finally, one checks if the start variable
has been marked.

e This marking can be done without using any more
tape squares so the above can be done by an LBA.

A Useful Lemma about LBASs

Lemma. Let M be an LBA with g states and g symbols in the
tape alphabet. There are exactly gng” distinct
configurations of M for a tape of length n.

Proof. A configuration consists of the state of the control of
the LBA, the position of the tape head, and the contents of
the tape. So there are g possibilities for the state, the head
can be 1n one of at most n positions, each of the n tapes
squares could have one of g symbols written in it (so g”"
possibilities). All together this gives, gng”.

Decidability and LBAS

Theorem. A, ;, 1s decidable.
Proof. The algorithm that decides A, 5, 1s as follows:

L="0On input <M, w>, where M 1s an LBA and w is a
string:
1. Simulate M on w for gng" steps or until it halts.

2. If M has halted, accept if 1t accepted; and reject if it rejected. If
it has not halted reject.”

LLBAs and Undecidability

. In contrast to the last theorem above, not all problems about LBAs are
decidable:

Theorem E, ;, is undecidable.

Proof. The reduction is from A,,. We show if E| ;, is decidable then A, also
would be decidable. Let L={w | w is a string of the form C #C,..#C, given a
legal accepting computation history of M on input x}. One can show that L
can be recognized by an LBA; let’s call it B. Further, if L is empty, <M, x>
is not in Ay So if E| 5, were decidable the following would be a decision
procedure for Ay

S= “On input <M, x>, where M is a TM and X is a string:
I. Construct LBA B from M on x as described in the proof idea.
2. Run R on input .
3. If R rejects, accept; if R accepts, reject.”

