
Yet More Undecidable
Languages

CS154
Chris Pollett
May 9, 2007.

Outline

• Emptiness Testing (reductions to a co-r.e. set)
• Reductions via Computation Histories

Reductions from a co-R.E. Set
• Using reducibility is the most common way to show a language is

undecidable.
• As another example, consider the language:

• ETM = {<M> | M is a TM and L(M)=∅}.
Theorem. ETM is undecidable.
Proof. First consider the following machine:
M1= “ On input x:
1. If x ≠ w, reject.
2. If x = w, run M on input w and accept if M does.”
This machine is a modification of M and it accepts at most one input w, and
it only accepts this if M does. Now suppose machine R decided ETM. Then
we could build the following machine to decide ATM giving a contradiction:
S = “On input <M,w>, an encoding of a TM M and a string w:
1. Use the description of M and w to make a corresponding machine
M1 as above.
2. Run R on input <M1>
3. If R accepts, reject; if R rejects, accept.”

• In this example, the map <M,w> --> <M1> can be computed by a TM, and it
reduces ATM to ETM

Reductions via Computation
Histories

• Consider the following language:
R := {<w,M, x> | w is the code of a sequence of configurations, beginning

with a start configuration of M on x, where each configuration yields the
next according to the transition table of TM M on input x. Further, the last
configuration is accepting.}

• This language is decidable (we check whether the first configuration
does match a starting configuration of M on x, then we examine pairs
of adjacent configurations and see if one follows from the other, etc).

• Notice ATM := {<M, x> | ∃w <w,M, x> ∈ R }.
• The string w in the above can be viewed as a computation history.
• Such histories are often useful in doing reductions from one problem

to another.

Formal Definition of a
Computation History.

• Let M be a TM and x an input string.
• An accepting computation history for M on x is a

sequence of configurations C1,.., Ck, where C1 is the start
configuration of M on x, Ck is an accepting configuration of
M, and each Ci legally follows from Ci-1 according to the
rules of M.

• A rejecting computation history for M is defined
similarly, except that Ck is a rejecting configuration.

Linear Bounded Automata
• We will next work towards using Computation Histories to

give undecidability proofs.
• Our first example will involve a new machine model which

has strength between a PDA and a TM.
• A linear bounded automata (LBA) is a restricted type of

TM wherein the tape head isn’t permitted to move off the
portion of the tape containing the input.

• If an LBA tries to move off this part of the tape to the
right, the tape head stays where it is.

Strength of LBAs

• One can verify that each of the TMs we gave for
the languages ADFA, ACFG, EDFA, and ECFG are
either LBAs or easily modified into LBAs.

• For example, ECFG involved marking each
terminal, then marking a variable A if it appear in
a A--> B1…Bn and the Bi’s had already been
marked. Finally, one checks if the start variable
has been marked.

• This marking can be done without using any more
tape squares so the above can be done by an LBA.

A Useful Lemma about LBAs
Lemma. Let M be an LBA with q states and g symbols in the

tape alphabet. There are exactly qngn distinct
configurations of M for a tape of length n.

Proof. A configuration consists of the state of the control of
the LBA, the position of the tape head, and the contents of
the tape. So there are q possibilities for the state, the head
can be in one of at most n positions, each of the n tapes
squares could have one of g symbols written in it (so gn

possibilities). All together this gives, qngn.

Decidability and LBAs

Theorem. ALBA is decidable.
Proof. The algorithm that decides ALBA is as follows:

L=“On input <M, w>, where M is an LBA and w is a
string:

1. Simulate M on w for qngn steps or until it halts.
2. If M has halted, accept if it accepted; and reject if it rejected. If

it has not halted reject.”

LBAs and Undecidability
• In contrast to the last theorem above, not all problems about LBAs are

decidable:
Theorem ELBA is undecidable.
Proof. The reduction is from ATM. We show if ELBA is decidable then ATM also

would be decidable. Let L={w | w is a string of the form C1#C2..#Ck given a
legal accepting computation history of M on input x}. One can show that L
can be recognized by an LBA; let’s call it B. Further, if L is empty, <M, x>
is not in ATM. So if ELBA were decidable the following would be a decision
procedure for ATM:
S= “On input <M,x>, where M is a TM and x is a string:

1. Construct LBA B from M on x as described in the proof idea.
2. Run R on input .
3. If R rejects, accept; if R accepts, reject.”

