Closure Properties of CFLs;
Introducing TMs

CS154
Chris Pollett
pr 9, 2007.

e

Outline

e Closure Properties of Context Free Languages
e Algorithms for CFLs

e Introducing Turing Machines

Closure Properties of CFL

e (CFL are closed under union.

— Proof idea: let G and H with start symbols S and T respectively, be two CFGs for
the CFL’s we want to take the union of. Make a new grammar with the same
alphabet, with the union of the two grammars productions (after renaming) together
with the new rules S”->SIT where S~ is the new start variable.

e CFLs are closed under intersection by regular languages.

— Proof idea: use the cartesian product construction on a PDA for the CFL together
with a DFA for the regular language.

* CFLs are not closed under intersection or complementation

— Proof: The languages {a"b"c™ | n, m =0} and {a™b"c"| n, m =0} are bothe context-
free. Their intersection is {a"b"c"| n =0} which is not by the pumping lemma. They
are not closed under complementation since using deMorgan rules, intersection can
be defined from union and complementation.

Algorithms for CFLs

We have already given an algorithm (CYK) for checking if a string is in a
CFLs.

We have also given algorithms for checking for useless variables in grammars,
as well as, for eliminating A-rules from grammars.

We now claim there is an algorithm, which given a grammar G written down
formally as a 4-tuple, can decide whether or not L(G) is empty.

— To do this, the algorithm check is the start variable is useless. If it is we know the
language is empty; otherwise it is not.

We also claim that there is an algorithm to check given G whether or not L(G)
is infinite.

— To do this, we first eliminate A-rules, unit-productions, and useless symbols from
G. We then construct a graph where (A,B) is an edge for two variables A,B in the
graph iff A-->xBy for some production in G. If there is a cycle in this graph then
C=>* uCv for some variable C in the original grammar. As there are no useless
symbols in this grammar, we must have C=>*z, for some string z of terminals.
Hence, also, S=>* sCt =>%* szt, S=>* sCt =>* suCvt =>* suzvt, etc. Thus, one can
argue there is a cycle in the graph iff G’s grammar is infinite.

General Models of Computation

So far we have looked at machines that either have bounded memory or access to
memory limited to stack operations.

We would like to consider models of computation which correspond to general purpose
computers.

In 1936, Alan Turing presented such a general model of a computer now called a Turing
Machine.

In this model, the machine has a finite control and a arbitrarily long tape of data
consisting of squares able to hold one symbol. The machine also has a read head which
can read one square at a time. Initially, this tape is blank except for the n first squares
under and to the right of the tape head which have the input. The machine in one step is
allowed to read what’s under its tape head, write a new symbol, move left or right one
square and change its state.

The machine has special states which cause it to halt. The contents of the tape when
these states are entered is the output of the machine.

The first actual computer developed for code-breaking during World War II was
actually partially based on his model.

It turns out this model is actually equivalent to what can be done on modern computers.

Example

e Let B be the language {w#w | w 1s a string over 0,1}. This
language is not context free.

e A Turing Machine M that could accept this language might
operate as follows:
On input w:

— Zig-zag across the tape to the corresponding positions on either side of the
symbol to check whether these positions contain the same symbol. If
they do not, or if no # is found do into the reject state. If they have the
same symbol change the symbol to a new symbol X.

When all the symbols on the left side of the # have been X’d out, check if
there are any more symbols to the right of the #. If yes reject; if not accept.

— By accept or reject, I mean we view the halting states as further
partitioned into those which are accepting and those which are rejecting

and we enter the appropriate kind of halting state.

Formal Definition of Turing
Machine

A Turing Machine (TM)s a 6-tuple (Q, X, I, 9, q,, H) where

1. Q is a finite set of states

2. 2CTI are respectively the input and tape alphabets. I" contains a space symbol ‘_’ not in Z.

3. 0:Qx I' -->Q x I' x {L, R} is the transition function. (JFLAP allows L,R,S where S is stay
put)

4. q, € Q is the start state.

5. H CQ is the set of Halting states of the machine

A TM receives its input w=w,w, ... w_. on the n squares of its tape under and to the right of the
tape head. The input is not allowed to contain blanks. The tape has arbitrarily many tape square to
he right and to the left of the starting tape head location. Except for the input, the rest of the tape
squares have the blank symbol. Once M starts, it follows the rules prescribed by the transition
function. A rule

(q,a)-->(q",b, L) says in state q reading an ‘a’ go to state q°, write a ‘b’ in the current square then
move the tape head left. (q,a)-->(q",b, R) would say the same thing except moves the tape
head right.

Computation continues until the machine enters a halt state.

Diagrams and Examples

As you can see above, there is a diagrammatic notation for Turing
Machines similar to that for PDA and DFAs.

The states are drawn as circles; two concentric circles indicates a halt
state (the book calls these final states).

Each transition is labeled with a triple x;y, D; where x 1s supposed to
be the symbol being read, y is the symbol to write, and D 1s the
direction to move.

For example, the above machine when started on a string over the
alphabet {a,b} converts it to a string of the same length consisting of
only b’s, then stops on the rightmost character of the output string.

Configurations, Yields

To specify the state of a computation at a given time (i.e., a configuration)
one needs to specify the tape contents, the head position, and the current state.

To do this it suffices to consider only the non-blank squares.

One can use the notation u q v to represent this information. Here u is a string
that represents the contents of the tape to the left of the tape head, q is the
current state and v is a string consisting of what is under the tape head
followed by the non-blank symbols to the right of the tape head.

For example, one might have 0011q,1100. This says the tape contents are
00111100, the machine is in state q-, and it is read the third 1 in this string.

We say configuration C yields C” if the TM can legally go from C to C’ in one
step. For instance, ua q bv yields u q” acv if d(q,b) =(q’, ¢, L).

Accept, Reject, Recognize, Decide

The start configuration of M on input w is the configuration g, w.

An accepting configuration is one in which the state of the configuration is
Qaceepts WHETE G, 1S SOMe state in H.

A rejecting configuration is one in which the state of the configuration is
Qreject where Dreject 1s some state in H.

A Turing machine M accepts w if a there 1s a sequence of configurations C,,
C,, .., C, such that C, is the start configuration of M on w; for i between 1 and
k-1, C, yields C,,, and C, is an accept configuration.

The collection of strings M accepts is denoted L(M) and is called the language
recognized by M.

A language is Turing-recognizable if some TM recognizes it.

A language is called decidable if there is some TM which halts on all inputs
which recognizes it.

