More Undecidable Languages

CS154
Chris Pollett
May 7, 2007.



Outline

e Refresher on Apy,

 More undecidable languages



Ay 18 not Recursive

Theorem. The language A= {<M,w>|M is a TM and M accepts on w} is not
recursive.

Proof. Suppose A is a decider for Ary. Fix M; and consider w’s of the form <M;> for
some other TM, M;. Then listing out encodings of TM’s in lex order <M>, <M >,..
we can create an infinite binary sequence where we have a 1 in the jth slot if <M;>
causes M, to accept and a O otherwise. If A is a decider A, then we can consider a
variant on the complement of the diagonal of the map f:<M;> |--> (A(<M;,<M>>),
A(<M,,<M>>),..). In particular, we can let D be the machine:

D=“On input <M>, where M is a TM:

— Run A on input <M, <M>>

— If A says Yes, then run forever. If A says no, then say halt and accept.”
Now consider D(<D>). Machine D halts if and only if A on input <D, <D>>
rejects. But A on input <D, <D>> rejects means that D did not halt on input <D>.
This is contradictory. A similar argument can be made about if D does not halt
<D>. Since assuming the existence of A leads to a contradiction, hence A must not

exist. Q.E.D.

Another way to look at this is if you give an A which purports to be a decider

for Ay, then we can give a specific input, <D, <D>>, which is calculated based on
A on which A fails.



A Specific Nonrecursively
Enumerable Language I

e Lastday we gave a counting argument to show a non recursively enumerable
language must exist - our argument though doesn’t give a specific example
language.

 We’ll use the next theorem to give an example.

» First, call a language co-recursively enumerable if its complement is
recursively enumerable.

Theorem. A language is decidable iff it is recursively enumerable and co-
recursively enumerable.

Proof. Suppose L is decidable by M. Then it is also r.e. Further, let M be the
machine which reject when M accepts and accepts when M rejects. The M
recognizes the complement of L. On the other hand, suppose L' is Turing
recognized by M" and co-Turing recognized by M. Then let D be the
machines which on input w simulates each of M" and M"' first for 1 step, then
for 2 steps, etc. If M’ ever accepts the D accepts and if M"" ever accepts then
D rejects. Since a string is either in L’ or not, one of these two machines must
accept eventually, and so then D will decide that string.



A Specific Non-Recursively
Enumerable Language 11

Corollary. A, is not r.e.

Proof. We proved in an earlier lecture Ay, 1S
recursively enumerable. So if A, were
r.e.,, then A, would be decidable giving a
contradiction with the halting problem
being undecidable.



Reducibility

We next consider what other problem are undecidable.

Our approach to showing languages are undecidable will be to use a
notion called reducibility.

A reduction r is a mapping from possible inputs /, to a problem A,
instances of A, to instances of problem B, with the property that /, € A
if and only 1f r(/,) € B.

If the reduction can be computed by a TM, i.e., a Turing reduction,
then if B 1s decidable then A will be too. Conversely, if A 1s not
decidable, then B also won’t be decidable.



Example

. Let HALT = {<M,w>| M is a TM and M halts on input w}.
Theorem. HALT,, is undecidable.

Proof. Suppose H decides HALT,, . From H we can construct a machine § which
decides A, as follows:

S = On input <M, w> an encoding of a TM M and a string w:

1. We build a new string <M”,w> where M" is a machine which simulates M until M
halts (if it does) and if M accept M~ accepts. Otherwise, if M reject that M” moves
right forever one, square at a time. The map <M,w> --> <M",w> is well defined
enough that it can be computed by a TM. This is our reduction.

2. We then ask our decider for H if <M, w> is in H. If H accepts we accept and if H
rejects we reject.”

. Since the only way M~ on input w halts is if M accepts w, we know <M,w>
is in Ay, 1iff <M”,w>1s in HALT,,. So if H was a decision procedure for
HALT,,, then S would be a decision procedure for Ar,,. As we know there
is no decision procedure for Ap,, we know that the supposed H can’t exist.



A Problem about Regular
LLanguages

. Even problems about regular languages can sometimes be hard. Let:
Regularyy, = {<M>|Mis a TM and L(M) is a regular language}.

Theorem. Regulary,, is undecidable.

Proof. Suppose R decides Regularr,,. Then the following machine decides Ay
S="On input <M,w>, where M is a TM and w is a string:

1. Construct the following machine M,:
M, =“On input x:
e If x has the form 01", accept.
e If x does not have this form, run M on input w and accept if M accepts w.”

/I So if M accepts w, then M, accepts all strings; otherwise, M, only accepts
strings of the form 0"1".

2. Run R on input <M,>.
3. If R accepts, accept; otherwise, if R rejects, reject.”



