More Undecidable Languages

CS154 Chris Pollett May 7, 2007.

Outline

- Refresher on A_{TM}
- More undecidable languages

A_{TM} is not Recursive

- **Theorem.** The language $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts on } w \}$ is not recursive.
- **Proof.** Suppose *A* is a decider for A_{TM} . Fix M_i and consider w's of the form $\langle M_j \rangle$ for some other TM, M_i . Then listing out encodings of TM's in lex order $\langle M_0 \rangle$, $\langle M_1 \rangle$,... we can create an infinite binary sequence where we have a 1 in the *j*th slot if $\langle M_j \rangle$ causes M_i to accept and a 0 otherwise. If *A* is a decider A_{TM} then we can consider a variant on the complement of the diagonal of the map f: $\langle M_i \rangle$ l--> (A($\langle M_i, \langle M_0 \rangle \rangle$), A($\langle M_i, \langle M_1 \rangle \rangle$),...). In particular, we can let D be the machine: D="On input $\langle M \rangle$, where *M* is a TM:
 - Run A on input <*M*, <*M*>>
 - If A says Yes, then run forever. If A says no, then say halt and accept."

Now consider $D(\langle D \rangle)$. Machine D halts if and only if A on input $\langle D, \langle D \rangle$ rejects. But A on input $\langle D, \langle D \rangle$ rejects means that D did not halt on input $\langle D \rangle$. This is contradictory. A similar argument can be made about if D does not halt $\langle D \rangle$. Since assuming the existence of A leads to a contradiction, hence A must not exist. Q.E.D.

Another way to look at this is if you give an *A* which purports to be a decider for A_{TM} then we can give a specific input, <D, <D>>, which is calculated based on *A* on which *A* fails.

A Specific Nonrecursively Enumerable Language I

- Last day we gave a counting argument to show a non recursively enumerable language must exist our argument though doesn't give a specific example language.
- We'll use the next theorem to give an example.
- First, call a language **co-recursively enumerable** if its complement is recursively enumerable.
- **Theorem.** A language is decidable iff it is recursively enumerable and corecursively enumerable.
- **Proof.** Suppose L is decidable by M. Then it is also r.e. Further, let \overline{M} be the machine which reject when M accepts and accepts when M rejects. The \overline{M} recognizes the complement of L. On the other hand, suppose L' is Turing recognized by M' and co-Turing recognized by M''. Then let D be the machines which on input w simulates each of M' and M'' first for 1 step, then for 2 steps, etc. If M' ever accepts the D accepts and if M'' ever accepts then D rejects. Since a string is either in L' or not, one of these two machines must accept eventually, and so then D will decide that string.

A Specific Non-Recursively Enumerable Language II

Corollary. \overline{A}_{TM} is not r.e.

Proof. We proved in an earlier lecture A_{TM} is recursively enumerable. So if \overline{A}_{TM} were r.e.,, then A_{TM} would be decidable giving a contradiction with the halting problem being undecidable.

Reducibility

- We next consider what other problem are undecidable.
- Our approach to showing languages are undecidable will be to use a notion called **reducibility**.
- A reduction r is a mapping from possible inputs I_A to a problem A, instances of A, to instances of problem B, with the property that $I_A \in A$ if and only if $r(I_A) \in B$.
- If the reduction can be computed by a TM, i.e., a **Turing reduction**, then if B is decidable then A will be too. Conversely, if A is not decidable, then B also won't be decidable.

Example

• Let $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}.$

Theorem. HALT_{TM} is undecidable.

- **Proof.** Suppose *H* decides $HALT_{TM}$. From *H* we can construct a machine *S* which decides A_{TM} as follows:
 - S = "On input $\langle M, w \rangle$ an encoding of a TM M and a string w:
 - 1. We build a new string <M',w> where M' is a machine which simulates M until M halts (if it does) and if M accept M' accepts. Otherwise, if M reject that M' moves right forever one, square at a time. The map <M,w> --> <M',w> is well defined enough that it can be computed by a TM. This is our reduction.
 - 2. We then ask our decider for H if <M',w> is in H. If H accepts we accept and if H rejects we reject."
- Since the only way M' on input w halts is if M accepts w, we know $\langle M, w \rangle$ is in A_{TM} iff $\langle M', w \rangle$ is in HALT_{TM}. So if H was a decision procedure for HALT_{TM}, then S would be a decision procedure for A_{TM} . As we know there is no decision procedure for A_{TM} we know that the supposed H can't exist.

A Problem about Regular Languages

• Even problems about regular languages can sometimes be hard. Let: Regular_{TM} = $\{ <M > | M \text{ is a TM and } L(M) \text{ is a regular language} \}.$

Theorem. Regular $_{TM}$ is undecidable.

Proof. Suppose R decides Regular_{TM}. Then the following machine decides A_{TM} : S= "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Construct the following machine M_2 :
 - M_2 = "On input *x*:
 - If x has the form $0^n 1^n$, accept.
 - If x does not have this form, run M on input w and accept if M accepts w."

// So if *M* accepts *w*, then M_2 accepts all strings; otherwise, M_2 only accepts strings of the form $0^{n}1^{n}$.

- 2. Run *R* on input $\langle M_2 \rangle$.
- 3. If *R* accepts, accept; otherwise, if *R* rejects, reject."