
More Undecidable Languages

CS154
Chris Pollett
May 7, 2007.

Outline

• Refresher on ATM

• More undecidable languages

ATM is not Recursive
Theorem. The language ATM= {<M,w> | M is a TM and M accepts on w} is not

recursive.
Proof. Suppose A is a decider for ATM. Fix Mi and consider w’s of the form <Mj> for

some other TM, Mi. Then listing out encodings of TM’s in lex order <M0>, <M1>,..
we can create an infinite binary sequence where we have a 1 in the jth slot if <Mj>
causes Mi to accept and a 0 otherwise. If A is a decider ATM then we can consider a
variant on the complement of the diagonal of the map f:<Mi> |--> (A(<Mi,<M0>>),
A(<Mi,<M1>>),..). In particular, we can let D be the machine:
D=“On input <M>, where M is a TM:

– Run A on input <M, <M>>
– If A says Yes, then run forever. If A says no, then say halt and accept.”

 Now consider D(<D>). Machine D halts if and only if A on input <D, <D>>
rejects. But A on input <D, <D>> rejects means that D did not halt on input <D>.
This is contradictory. A similar argument can be made about if D does not halt
<D>. Since assuming the existence of A leads to a contradiction, hence A must not
exist. Q.E.D.

Another way to look at this is if you give an A which purports to be a decider
for ATM then we can give a specific input, <D, <D>>, which is calculated based on
A on which A fails.

A Specific Nonrecursively
Enumerable Language I

• Last day we gave a counting argument to show a non recursively enumerable
language must exist - our argument though doesn’t give a specific example
language.

• We’ll use the next theorem to give an example.
• First, call a language co-recursively enumerable if its complement is

recursively enumerable.
Theorem. A language is decidable iff it is recursively enumerable and co-

recursively enumerable.
Proof. Suppose L is decidable by M. Then it is also r.e. Further, let M be the

machine which reject when M accepts and accepts when M rejects. The M
recognizes the complement of L. On the other hand, suppose L′ is Turing
recognized by M′ and co-Turing recognized by M′′. Then let D be the
machines which on input w simulates each of M′ and M′′ first for 1 step, then
for 2 steps, etc. If M′ ever accepts the D accepts and if M′′ ever accepts then
D rejects. Since a string is either in L′ or not, one of these two machines must
accept eventually, and so then D will decide that string.

A Specific Non-Recursively
Enumerable Language II

Corollary. ATM is not r.e.
Proof. We proved in an earlier lecture ATM is

recursively enumerable. So if ATM were
r.e.,, then ATM would be decidable giving a
contradiction with the halting problem
being undecidable.

Reducibility
• We next consider what other problem are undecidable.
• Our approach to showing languages are undecidable will be to use a

notion called reducibility.
• A reduction r is a mapping from possible inputs IA to a problem A,

instances of A, to instances of problem B, with the property that IA ∈ A
if and only if r(IA) ∈ B.

• If the reduction can be computed by a TM, i.e., a Turing reduction,
then if B is decidable then A will be too. Conversely, if A is not
decidable, then B also won’t be decidable.

Example
• Let HALTTM = {<M,w> | M is a TM and M halts on input w}.
Theorem. HALTTM is undecidable.
Proof. Suppose H decides HALTTM . From H we can construct a machine S which

decides ATM as follows:
S =“ On input <M, w> an encoding of a TM M and a string w:

1. We build a new string <M´,w> where M´ is a machine which simulates M until M
halts (if it does) and if M accept M´ accepts. Otherwise, if M reject that M´ moves
right forever one, square at a time. The map <M,w> --> <M´,w> is well defined
enough that it can be computed by a TM. This is our reduction.

2. We then ask our decider for H if <M´,w> is in H. If H accepts we accept and if H
rejects we reject.”

• Since the only way M´ on input w halts is if M accepts w, we know <M,w>
is in ATM iff <M´,w> is in HALTTM. So if H was a decision procedure for
HALTTM, then S would be a decision procedure for ATM. As we know there
is no decision procedure for ATM we know that the supposed H can’t exist.

A Problem about Regular
Languages

• Even problems about regular languages can sometimes be hard. Let:
RegularTM = {<M> | M is a TM and L(M) is a regular language}.

Theorem. RegularTM is undecidable.
Proof. Suppose R decides RegularTM. Then the following machine decides ATM:

S=“On input <M,w>, where M is a TM and w is a string:
1. Construct the following machine M2:

M2 = “On input x:
• If x has the form 0n1n, accept.
• If x does not have this form, run M on input w and accept if M accepts w.”
// So if M accepts w, then M2 accepts all strings; otherwise, M2 only accepts

strings of the form 0n1n.
2. Run R on input <M2>.
3. If R accepts, accept; otherwise, if R rejects, reject.”

