
More Undecidable Languages

CS154
Chris Pollett
May 7, 2007.

Outline

• Refresher on ATM

• More undecidable languages

ATM is not Recursive
Theorem. The language ATM= {<M,w> | M is a TM and M accepts on w} is not

recursive.
Proof. Suppose A is a decider for ATM. Fix Mi and consider w’s of the form <Mj> for

some other TM, Mi. Then listing out encodings of TM’s in lex order <M0>, <M1>,..
we can create an infinite binary sequence where we have a 1 in the jth slot if <Mj>
causes Mi to accept and a 0 otherwise. If A is a decider ATM then we can consider a
variant on the complement of the diagonal of the map f:<Mi> |--> (A(<Mi,<M0>>),
A(<Mi,<M1>>),..). In particular, we can let D be the machine:
D=“On input <M>, where M is a TM:

– Run A on input <M, <M>>
– If A says Yes, then run forever. If A says no, then say halt and accept.”

 Now consider D(<D>). Machine D halts if and only if A on input <D, <D>>
rejects. But A on input <D, <D>> rejects means that D did not halt on input <D>.
This is contradictory. A similar argument can be made about if D does not halt
<D>. Since assuming the existence of A leads to a contradiction, hence A must not
exist. Q.E.D.

Another way to look at this is if you give an A which purports to be a decider
for ATM then we can give a specific input, <D, <D>>, which is calculated based on
A on which A fails.

A Specific Nonrecursively
Enumerable Language I

• Last day we gave a counting argument to show a non recursively enumerable
language must exist - our argument though doesn’t give a specific example
language.

• We’ll use the next theorem to give an example.
• First, call a language co-recursively enumerable if its complement is

recursively enumerable.
Theorem. A language is decidable iff it is recursively enumerable and co-

recursively enumerable.
Proof. Suppose L is decidable by M. Then it is also r.e. Further, let M be the

machine which reject when M accepts and accepts when M rejects. The M
recognizes the complement of L. On the other hand, suppose L′ is Turing
recognized by M′ and co-Turing recognized by M′′. Then let D be the
machines which on input w simulates each of M′ and M′′ first for 1 step, then
for 2 steps, etc. If M′ ever accepts the D accepts and if M′′ ever accepts then
D rejects. Since a string is either in L′ or not, one of these two machines must
accept eventually, and so then D will decide that string.

A Specific Non-Recursively
Enumerable Language II

Corollary. ATM is not r.e.
Proof. We proved in an earlier lecture ATM is

recursively enumerable. So if ATM were
r.e.,, then ATM would be decidable giving a
contradiction with the halting problem
being undecidable.

Reducibility
• We next consider what other problem are undecidable.
• Our approach to showing languages are undecidable will be to use a

notion called reducibility.
• A reduction r is a mapping from possible inputs IA to a problem A,

instances of A, to instances of problem B, with the property that IA ∈ A
if and only if r(IA) ∈ B.

• If the reduction can be computed by a TM, i.e., a Turing reduction,
then if B is decidable then A will be too. Conversely, if A is not
decidable, then B also won’t be decidable.

Example
• Let HALTTM = {<M,w> | M is a TM and M halts on input w}.
Theorem. HALTTM is undecidable.
Proof. Suppose H decides HALTTM . From H we can construct a machine S which

decides ATM as follows:
S =“ On input <M, w> an encoding of a TM M and a string w:

1. We build a new string <M´,w> where M´ is a machine which simulates M until M
halts (if it does) and if M accept M´ accepts. Otherwise, if M reject that M´ moves
right forever one, square at a time. The map <M,w> --> <M´,w> is well defined
enough that it can be computed by a TM. This is our reduction.

2. We then ask our decider for H if <M´,w> is in H. If H accepts we accept and if H
rejects we reject.”

• Since the only way M´ on input w halts is if M accepts w, we know <M,w>
is in ATM iff <M´,w> is in HALTTM. So if H was a decision procedure for
HALTTM, then S would be a decision procedure for ATM. As we know there
is no decision procedure for ATM we know that the supposed H can’t exist.

A Problem about Regular
Languages

• Even problems about regular languages can sometimes be hard. Let:
RegularTM = {<M> | M is a TM and L(M) is a regular language}.

Theorem. RegularTM is undecidable.
Proof. Suppose R decides RegularTM. Then the following machine decides ATM:

S=“On input <M,w>, where M is a TM and w is a string:
1. Construct the following machine M2:

M2 = “On input x:
• If x has the form 0n1n, accept.
• If x does not have this form, run M on input w and accept if M accepts w.”
// So if M accepts w, then M2 accepts all strings; otherwise, M2 only accepts

strings of the form 0n1n.
2. Run R on input <M2>.
3. If R accepts, accept; otherwise, if R rejects, reject.”

