
More Finite Automata

CS154
Chris Pollett
Feb 7, 2007.

Formal Definition
• A deterministic finite automaton (DFA) is a 5-tuple (Q,

∑, δ, q0, F), where
1. Q is a finite set called the states.
2. ∑ is a finite set called the alphabet.
3. δ:Q x ∑ --> Q is the transition function.
4. q0∈ Q is the start state, and
5. F ⊆ Q is the set of accept states.

• The transition function tells us if we are in a given state
reading a given symbol what is the next state to go to.

• Note: the book calls these deterministic finite acceptors

Example of the Definition
• Consider the machine:

1. Q = {q1, q2, q3}
2. ∑ = {0, 1}
3. δ can be described as:

(q1, 0) --> q1 (q1, 1) --> q2
(q2, 0) --> q3 (q2, 1) --> q2
(q3, 0) --> q2 (q3, 1) --> q2

4. q1 is the start state, and
5. F = {q2}

• We write L(M) for the language that M accepts. That is, those strings that
M accepts.

• Given a set of strings S, we say M recognizes S if L(M)=S.
• So M1 recognizes { w | w contains at least one 1 and an even number of 0s

follow the last 1}

q1 q2 q3
1 00 1

1,0

The Extended Transition
Function

• Let M= (Q, ∑, δ, q0, F) be a finite automaton and let w be a string.
• We define the extended transition δ*:Q x ∑*-->Q function

inductively:
1. δ*(q, λ) --> q
2. δ*(q, wa) --> δ(δ*(q,w),a)

• Intuitively, the equation δ*(q, w) =q´ tells us that if we are in state q
when we begin to process the string w, then after processing w we
will be in state q´.

• We say M accepts w if for some q∈ F we have δ*(q0, w)=q. i.e., we
start in the start state q0, process w, and end up in an accept state.

• We say M recognizes language A if A= {w | M accepts w}.
• A language is called a regular language if some finite automaton

recognizes it.

Trap States
• For DFA, we require δ to be a total function.
• This means for every state q and every alphabet symbol a, δ(q,a) must

return some state q´.
• That δ is total will force δ* to be total as well.
• Consider the problem of designing an automaton for the language: {w |

w = anb for some n≥0}.
• On a string like aabab, after the third a we know the string is not in the

language; nevertheless, since the transition function is total we still
need to continue processing the string until it is done.

• This can be done with a trap state, which has a loop back to itself for
every alphabet symbol.

Theorem
Let M= (Q, ∑, δ, q0, F) be a DFA, and GM be its associated transition

graph. Then for every qi, qj in Q and w in ∑* , δ*(qi,w) = qj iff there is
in GM a walk with label w (that is, the edge labels written down as a
string are w) from qito qj.

Proof. We give a proof by induction on the length n≥0 of w. Notice δ*(q,
λ)=q corresponds exactly with a walk of length 0 in GM . So the |w|=0
case hold. Assume the statement is true up to some n. Let w=va where
|v|=n. (The induction step case.) Suppose δ*(qi,v) = qk . By the
induction hypothesis there is a walk W of length n in GM from qi,to qk.
If δ*(qi,w) = qj we must have δ*(qi,w) =δ(δ*(qi,v),a) = qj by the
definition of δ*. So we have δ(qk,a) = qj. Thus, if we add to W the
edge (qk, qj), the label on the resulting walk will be va=w as desired.
This new walk has length n+1. It is also not hard to turn this argument
around to show if one stated with a walk of length n+1 with label w,
that one could show δ*(qi,w) = qj. You should do this at home.

Nondeterministic Finite
Automata

• Having trap states, and transitions in general for every alphabet symbol
can make ones diagrams looks messy and be a pain to maintain.

• To get around this one could imagine using a rule which says a string
is automatically rejected if it ever happens that one cannot transition
out of a state by reading the next symbol of the string.

• It is also sometimes convenient if we want to build bigger automata
out of smaller automata, to allow two transitions with the same
alphabet symbol out of a state. Or even to allow transitions where we
don’t read a symbol at all!

• These ideas motivate the concept of nondeterministic machine.

Example NFA

• Notice we have more than one transition out of a state, we can have ε-transitions, and we
don’t need to have a transition from every alphabet symbol from a state.

• We say the NFA accepts w roughly if there is some sequence of transitions beginning
with the start state, that processes each character of w and ends in an accept state.

• For instance, the machine above accept ε, 0, 00, 000, 1; but rejects 01, 11, 0001. It rejects
01 because although it can get to state q2 after seeing ε0 = 0, it has nowhere to go when it
sees a 1 so it can’t process the 1 so it rejects. No other path in the machine processes 01
even this far.

q1

q2ε,1

q31

0

Formal Definition of an NFA

• Recall the power set of a set Q, P(Q), is the set of all
subsets of Q.

• A nondeterministic finite automaton is a 5-tuple (Q, Σ,
δ, q0, F) where

1. Q is a finite set of states,
2. Σ is an alphabet,
3. δ: Q x Σ ∪{λ} --> P(Q) is the transition function,
4. q0 ∈ Q is the start state, and
5. F ⊆ Q is the set of accept states.

Example

• The machine a couple slides back is defined as
(Q, Σ, δ, q1, F) where

1. Q={q1, q2, q3}
2. Σ = {0, 1}
3. δ is given by:

δ(q1, ε)--> {q2} δ(q2, ε)--> {} δ(q3, ε)--> {}
δ(q1, 0)--> {} δ(q2, 0)--> {q2} δ(q3, 0)--> {}
δ(q1, 1) --> {q2,q3} δ(q2, 1)--> {} δ(q3, 1)--> {}

4. q1 is the start state
5. F = {q2, q3}

Formal Definition of Accepts

• To define what it means for an NFA to accept
we can modify the definition of δ* so that it
works on a set of states. i.e., δ*(qi, w) =Qj,
where Qj is the set of possible state one could be
in after processing w starting in state qi.

• We say M accepts w then if δ*(q0, w)∩F is
nonempty.

• We write L(M) for the set of strings M accepts.

