More Finite Automata

CS154
Chris Pollett
Feb 7, 2007.

A

Formal Definition

A deterministic finite automaton (DFA) 1s a 5-tuple (Q,
>, 0,]y, F), where

Q 1s a finite set called the states.

> 1s a finite set called the alphabet.

0:Q x Y -->Q is the transition function.

qoE Q 1s the start state, and

F C Q is the set of accept states.

The transition function tells us if we are in a given state
reading a given symbol what 1s the next state to go to.

Note: the book calls these deterministic finite acceptors

Example of the Definition

0. 1 LA 0
Consider the machine: @ @
I Q=1ql,q2, 93} 1,0
2. > =40,1}
3. O can be described as:

(ql,0) -->(ql (ql, 1) -->q2
(q2,0)-->q3 (q2,1)->q2
q3,0)-->q2 (g3, 1)->q2
4. ql is the start state, and
5. F={q2}
We write L(M) for the language that M accepts. That is, those strings that
M accepts.

Given a set of strings S, we say M recognizes S if L(M)=S.

So M, recognizes { w | w contains at least one 1 and an even number of Os
follow the last 1}

The Extended Transition
Function

Let M= (Q, X, 9, q,, F) be a finite automaton and let w be a string.
We define the extended transition 8*:Q x > ">Q function
inductively:

I. 0*q,A)-->q

2. 0*(q, wa) --> 0(0*(q,w),a)
Intuitively, the equation 0*(q, w) =q” tells us that if we are in state q

when we begin to process the string w, then after processing w we
will be in state q".

We say M accepts w if for some g€ F we have 0*(q,, w)=q. 1.e., we
start in the start state q,, process w, and end up in an accept state.

We say M recognizes language A if A= {w | M accepts w}.

A language is called a regular language if some finite automaton
recognizes it.

Trap States

For DFA, we require 6 to be a total function.

This means for every state q and every alphabet symbol a, 6(q,a) must
return some state q".

That 0 is total will force d* to be total as well.

Consider the problem of designing an automaton for the language: {w |
w = a"b for some n=0}.

On a string like aabab, after the third a we know the string 1s not in the
language; nevertheless, since the transition function is total we still
need to continue processing the string until it is done.

This can be done with a trap state, which has a loop back to itself for
every alphabet symbol.

Theorem

Let M= (Q, 2, 9, q,, F) be a DFA, and G,, be its associated transition
graph. Then for every q;, q; in Q and w in >, 0%(q,w) = q; iff there is
in G,; a walk with label w (that 1s, the edge labels written down as a
string are w) from qto g;.

Proof. We give a proof by induction on the length n=0 of w. Notice 0*(q,
\)=q corresponds exactly with a walk of length O in G, . So the |wl=0
case hold. Assume the statement is true up to some n. Let w=va where
lvl=n. (The induction step case.) Suppose 0*(q;,v) = q, . By the
induction hypothesis there 1s a walk W of length n in G, from g,,to q.
If 0*(q;,w) = g; we must have 0*(q;,w) =0(0*(q;,v),a) = q; by the
definition of 0*. So we have 0(q,a) = q;. Thus, if we add to W the
edge (q. q;), the label on the resulting walk will be va=w as desired.
This new walk has length n+1. It is also not hard to turn this argument
around to show if one stated with a walk of length n+1 with label w,
that one could show 6*(q;,w) = q;. You should do this at home.

Nondeterministic Finite
Automata

Having trap states, and transitions in general for every alphabet symbol
can make ones diagrams looks messy and be a pain to maintain.

To get around this one could imagine using a rule which says a string
1s automatically rejected if it ever happens that one cannot transition
out of a state by reading the next symbol of the string.

It 1s also sometimes convenient if we want to build bigger automata
out of smaller automata, to allow two transitions with the same
alphabet symbol out of a state. Or even to allow transitions where we
don’t read a symbol at all!

These 1deas motivate the concept of nondeterministic machine.
A A

Example NFA

l‘

e

Notice we have more than one transition out of a state, we can have e-transitions, and we
don’t need to have a transition from every alphabet symbol from a state.

We say the NFA accepts w roughly if there is some sequence of transitions beginning
with the start state, that processes each character of w and ends in an accept state.

For instance, the machine above accept €, 0, 00, 000, 1; but rejects 01, 11, 0001. It rejects
01 because although it can get to state q2 after seeing €0 = 0, it has nowhere to go when it

sees a 1 so it can’t process the 1 so it rejects. No other path in the machine processes 01
even this far.

Formal Definition of an NFA

Recall the power set of a set Q, P(Q), 1s the set of all
subsets of Q.

A nondeterministic finite automaton is a 5-tuple (Q, Z,
9, 4y, F) where

Q 1s a finite set of states,

2 1s an alphabet,

0: Q x 2 U{A} --> P(Q) is the transition function,

qo € Q 1s the start state, and

F C Q is the set of accept states.

A e

Example

e The machine a couple slides back 1s defined as
(Q, Z, 0, ql, F) where
1. Q={ql,q2,q3}
. =40, 1}
3. 0 is given by:
o(ql, &)-->{q2} 0(q2,e)-->{} 0(q3,e)-->{}
o(ql, 0)-->{} 0(q2,0)-->{q2} 0(q3, 0)-->{}
o(ql, 1) -->{q2,q3} o(q2,)-->{} o(q3, 1)-->{}
4. ql 1s the start state
5. F=4{q2,q3}

Formal Definition of Accepts

To define what 1t means for an NFA to accept
we can modify the definition of 0* so that it
works on a set of states. i.e., 0%(q;, W) = s

where Q; 1s the set of possible state one could be
1n after processing w starting in state q;.

We say M accepts w then if 0*(q,, w)NF is
nonempty.

We write L(M) for the set of strings M accepts.

