#### More Finite Automata

CS154 Chris Pollett Feb 7, 2007.

### Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F), where
  - 1. Q is a finite set called the **states**.
  - 2.  $\Sigma$  is a finite set called the **alphabet**.
  - 3.  $\delta: Q \ge --> Q$  is the transition function.
  - 4.  $q_0 \in Q$  is the **start state**, and
  - 5.  $F \subseteq Q$  is the set of accept states.
- The transition function tells us if we are in a given state reading a given symbol what is the next state to go to.
- Note: the book calls these deterministic finite acceptors

## Example of the Definition

- Consider the machine:
  - 1.  $Q = \{q1, q2, q3\}$
  - 2.  $\Sigma = \{0, 1\}$
  - 3.  $\delta$  can be described as:

$$\begin{array}{ll} (q1, 0) & \dashrightarrow q1 & (q1, 1) & \dashrightarrow q2 \\ (q2, 0) & \dashrightarrow q3 & (q2, 1) & \dashrightarrow q2 \\ (q3, 0) & \dashrightarrow q2 & (q3, 1) & \dashrightarrow q2 \end{array}$$

4. q1 is the start state, and

5. 
$$F = \{q2\}$$

- We write L(M) for the language that M accepts. That is, those strings that M accepts.
- Given a set of strings S, we say **M recognizes S** if L(M)=S.
- So  $M_1$  recognizes { w | w contains at least one 1 and an even number of 0s follow the last 1}

# The Extended Transition Function

- Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a finite automaton and let w be a string.
- We define the extended transition  $\delta^*:Q \ge \sum^{*-->}Q$  function inductively:
  - 1.  $\delta^*(q, \lambda) \rightarrow q$
  - 2.  $\delta^*(q, wa) \longrightarrow \delta(\delta^*(q, w), a)$
- Intuitively, the equation  $\delta^*(q, w) = q'$  tells us that if we are in state q when we begin to process the string w, then after processing w we will be in state q'.
- We say **M accepts w** if for some  $q \in F$  we have  $\delta^*(q_0, w)=q$ . i.e., we start in the start state  $q_0$ , process w, and end up in an accept state.
- We say **M recognizes language A** if A= {w | M accepts w}.
- A language is called a **regular language** if some finite automaton recognizes it.

# **Trap States**

- For DFA, we require  $\delta$  to be a **total function**.
- This means for every state q and every alphabet symbol a,  $\delta(q,a)$  must return some state q'.
- That  $\delta$  is total will force  $\delta^*$  to be total as well.
- Consider the problem of designing an automaton for the language: {w | w = a<sup>n</sup>b for some n≥0}.
- On a string like aabab, after the third a we know the string is not in the language; nevertheless, since the transition function is total we still need to continue processing the string until it is done.
- This can be done with a **trap state**, which has a loop back to itself for every alphabet symbol.

#### Theorem

- Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA, and  $G_M$  be its associated transition graph. Then for every  $q_i$ ,  $q_j$  in Q and w in  $\Sigma^*$ ,  $\delta^*(q_i, w) = q_j$  iff there is in  $G_M$  a walk with label w (that is, the edge labels written down as a string are w) from  $q_i$  to  $q_i$ .
- **Proof**. We give a proof by induction on the length  $n \ge 0$  of w. Notice  $\delta^*(q, \lambda) = q$  corresponds exactly with a walk of length 0 in  $G_M$ . So the |w|=0 case hold. Assume the statement is true up to some n. Let w=va where |v|=n. (The induction step case.) Suppose  $\delta^*(q_i,v) = q_k$ . By the induction hypothesis there is a walk W of length n in  $G_M$  from  $q_i$ ,to  $q_k$ . If  $\delta^*(q_i,w) = q_j$  we must have  $\delta^*(q_i,w) = \delta(\delta^*(q_i,v),a) = q_j$  by the definition of  $\delta^*$ . So we have  $\delta(q_k,a) = q_j$ . Thus, if we add to W the edge  $(q_k, q_j)$ , the label on the resulting walk will be va=w as desired. This new walk has length n+1. It is also not hard to turn this argument around to show if one stated with a walk of length n+1 with label w, that one could show  $\delta^*(q_i,w) = q_i$ . You should do this at home.

# Nondeterministic Finite Automata

- Having trap states, and transitions in general for every alphabet symbol can make ones diagrams looks messy and be a pain to maintain.
- To get around this one could imagine using a rule which says a string is automatically rejected if it ever happens that one cannot transition out of a state by reading the next symbol of the string.
- It is also sometimes convenient if we want to build bigger automata out of smaller automata, to allow two transitions with the same alphabet symbol out of a state. Or even to allow transitions where we don't read a symbol at all!
- These ideas motivate the concept of nondeterministic machine.





- Notice we have more than one transition out of a state, we can have ε-transitions, and we don't need to have a transition from every alphabet symbol from a state.
- We say the NFA accepts w roughly if there is some sequence of transitions beginning with the start state, that processes each character of w and ends in an accept state.
- For instance, the machine above accept  $\varepsilon$ , 0, 00, 000, 1; but rejects 01, 11, 0001. It rejects 01 because although it can get to state q2 after seeing  $\varepsilon 0 = 0$ , it has nowhere to go when it sees a 1 so it can't process the 1 so it rejects. No other path in the machine processes 01 even this far.

## Formal Definition of an NFA

- Recall the power set of a set Q, P(Q), is the set of all subsets of Q.
- A nondeterministic finite automaton is a 5-tuple (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>, F) where
  - 1. Q is a finite set of states,
  - 2.  $\Sigma$  is an alphabet,
  - 3.  $\delta: Q \ge \Sigma \cup \{\lambda\} \longrightarrow P(Q)$  is the transition function,
  - 4.  $q_0 \in Q$  is the start state, and
  - 5.  $F \subseteq Q$  is the set of accept states.

## Example

- The machine a couple slides back is defined as  $(Q, \Sigma, \delta, q1, F)$  where
  - 1.  $Q=\{q1, q2, q3\}$
  - 2.  $\Sigma = \{0, 1\}$
  - 3.  $\delta$  is given by:

 $\begin{array}{ll} \delta(q1, \epsilon) & \rightarrow \{q2\} & \delta(q2, \epsilon) & \rightarrow \{\} \\ \delta(q1, 0) & \rightarrow \{\} & \delta(q2, 0) & \rightarrow \{q2\} & \delta(q3, 0) & \rightarrow \{\} \\ \delta(q1, 1) & \rightarrow \{q2, q3\} & \delta(q2, 1) & \rightarrow \{\} & \delta(q3, 1) & \rightarrow \{\} \end{array}$ 

- 4. q1 is the start state
- 5.  $F = \{q2, q3\}$

### Formal Definition of Accepts

- To define what it means for an NFA to accept we can modify the definition of δ\* so that it works on a set of states. i.e., δ\*(q<sub>i</sub>, w) =Q<sub>j</sub>, where Q<sub>j</sub> is the set of possible state one could be in after processing w starting in state q<sub>i</sub>.
- We say M accepts w then if  $\delta^*(q_0, w) \cap F$  is nonempty.
- We write L(M) for the set of strings M accepts.