# More Finite Automata 

## CS154

Chris Pollett
Feb 7, 2007.

## Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple (Q, $\left.\Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$, where

1. Q is a finite set called the states.
2. $\quad \Sigma$ is a finite set called the alphabet.
3. $\delta: Q \times \Sigma$--> Q is the transition function.
4. $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state, and
5. $\mathrm{F} \subseteq \mathrm{Q}$ is the set of accept states.

- The transition function tells us if we are in a given state reading a given symbol what is the next state to go to.
- Note: the book calls these deterministic finite acceptors


## Example of the Definition

- Consider the machine:

1. $\mathrm{Q}=\{\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\}$

2. $\Sigma=\{0,1\}$
3. $\delta$ can be described as:

$$
\begin{array}{ll}
(\mathrm{q} 1,0)-->\mathrm{q} 1 & (\mathrm{q} 1,1)-->\mathrm{q} 2 \\
(\mathrm{q} 2,0)-->\mathrm{q} 3 & (\mathrm{q} 2,1)-->\mathrm{q} 2 \\
(\mathrm{q} 3,0)-->\mathrm{q} 2 & (\mathrm{q} 3,1)-->\mathrm{q} 2
\end{array}
$$

4. q 1 is the start state, and
5. $\mathrm{F}=\{\mathrm{q} 2\}$

- We write $\mathrm{L}(\mathrm{M})$ for the language that M accepts. That is, those strings that M accepts.
- Given a set of strings $S$, we say $\mathbf{M}$ recognizes $\mathbf{S}$ if $L(M)=S$.
- $\quad$ So $\mathrm{M}_{1}$ recognizes $\{\mathrm{w} \mid \mathrm{w}$ contains at least one 1 and an even number of 0 s follow the last 1\}


## The Extended Transition <br> Function

- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be a finite automaton and let w be a string.
- We define the extended transition $\delta^{*}: \mathrm{Q} \times \Sigma^{*->} \mathrm{Q}$ function inductively:

1. $\delta^{*}(\mathrm{q}, \lambda)-->\mathrm{q}$
2. $\quad \delta^{*}(\mathrm{q}, \mathrm{wa}) ~-->\delta\left(\delta^{*}(\mathrm{q}, \mathrm{w}), \mathrm{a}\right)$

- Intuitively, the equation $\delta^{*}(\mathrm{q}, \mathrm{w})=\mathrm{q}^{\prime}$ tells us that if we are in state q when we begin to process the string w , then after processing w we will be in state $q^{\prime}$.
- We say $\mathbf{M}$ accepts $\mathbf{w}$ if for some $q \in F$ we have $\delta^{*}\left(q_{0}, w\right)=q$. i.e., we start in the start state $\mathrm{q}_{0}$, process w , and end up in an accept state.
- We say $\mathbf{M}$ recognizes language $\mathbf{A}$ if $A=\{w \mid M$ accepts $w\}$.
- A language is called a regular language if some finite automaton recognizes it.


## Trap States

- For DFA, we require $\delta$ to be a total function.
- This means for every state $q$ and every alphabet symbol $a, \delta(q, a)$ must return some state $\mathrm{q}^{\prime}$.
- That $\delta$ is total will force $\delta^{*}$ to be total as well.
- Consider the problem of designing an automaton for the language: $\{\mathrm{w} \mid$ $w=a^{\mathrm{n}} b$ for some $\left.\mathrm{n} \geq 0\right\}$.
- On a string like aabab, after the third a we know the string is not in the language; nevertheless, since the transition function is total we still need to continue processing the string until it is done.
- This can be done with a trap state, which has a loop back to itself for every alphabet symbol.


## Theorem

Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be a DFA , and $\mathrm{G}_{\mathrm{M}}$ be its associated transition graph. Then for every $q_{i}, q_{j}$ in $Q$ and $w$ in $\Sigma^{*}, \delta *\left(q_{i}, w\right)=q_{j}$ iff there is in $\mathrm{G}_{\mathrm{M}}$ a walk with label w (that is, the edge labels written down as a string are $w$ ) from $q_{i}$ to $q_{j}$.
Proof. We give a proof by induction on the length $n \geq 0$ of w. Notice $\delta *(q$, $\lambda)=q$ corresponds exactly with a walk of length 0 in $G_{M}$. So the $|w|=0$ case hold. Assume the statement is true up to some n. Let w=va where $|\mathrm{v}|=\mathrm{n}$. (The induction step case.) Suppose $\delta^{*}\left(\mathrm{q}_{\mathrm{i}}, v\right)=\mathrm{q}_{\mathrm{k}}$. By the induction hypothesis there is a walk $W$ of length $n$ in $G_{M}$ from $q_{i}$,to $q_{k}$. If $\delta^{*}\left(q_{i}, w\right)=q_{j}$ we must have $\delta^{*}\left(q_{i}, w\right)=\delta\left(\delta^{*}\left(q_{i}, v\right), a\right)=q_{j}$ by the definition of $\delta^{*}$. So we have $\delta\left(q_{k}, a\right)=q_{j}$. Thus, if we add to $W$ the edge $\left(q_{k}, q_{j}\right)$, the label on the resulting walk will be va=w as desired. This new walk has length $n+1$. It is also not hard to turn this argument around to show if one stated with a walk of length $n+1$ with label w , that one could show $\delta^{*}\left(q_{i}, w\right)=q_{j}$. You should do this at home.

## Nondeterministic Finite Automata

- Having trap states, and transitions in general for every alphabet symbol can make ones diagrams looks messy and be a pain to maintain.
- To get around this one could imagine using a rule which says a string is automatically rejected if it ever happens that one cannot transition out of a state by reading the next symbol of the string.
- It is also sometimes convenient if we want to build bigger automata out of smaller automata, to allow two transitions with the same alphabet symbol out of a state. Or even to allow transitions where we don't read a symbol at all!
- These ideas motivate the concept of nondeterministic machine.



## Example NFA



- Notice we have more than one transition out of a state, we can have $\varepsilon$-transitions, and we don't need to have a transition from every alphabet symbol from a state.
- We say the NFA accepts w roughly if there is some sequence of transitions beginning with the start state, that processes each character of $w$ and ends in an accept state.
- For instance, the machine above accept $\varepsilon, 0,00,000,1$; but rejects $01,11,0001$. It rejects 01 because although it can get to state $q 2$ after seeing $\varepsilon 0=0$, it has nowhere to go when it sees a 1 so it can't process the 1 so it rejects. No other path in the machine processes 01 even this far.


## Formal Definition of an NFA

- Recall the power set of a set $\mathrm{Q}, \mathrm{P}(\mathrm{Q})$, is the set of all subsets of Q.
- A nondeterministic finite automaton is a 5-tuple (Q, $\Sigma$, $\left.\delta, q_{0}, F\right)$ where

1. Q is a finite set of states,
2. $\Sigma$ is an alphabet,
3. $\delta: \mathrm{Q} \times \Sigma \cup\{\lambda\}-->\mathrm{P}(\mathrm{Q})$ is the transition function,
4. $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state, and
5. $\mathrm{F} \subseteq \mathrm{Q}$ is the set of accept states.

## Example

- The machine a couple slides back is defined as (Q, $\Sigma, \delta, q 1, F)$ where

1. $\mathrm{Q}=\{\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\}$
2. $\Sigma=\{0,1\}$
3. $\delta$ is given by:

$$
\begin{array}{lcc}
\delta(\mathrm{q} 1, \varepsilon)-->\{q 2\} & \delta(\mathrm{q} 2, \varepsilon)-->\{ \} & \delta(\mathrm{q} 3, \varepsilon)-->\{ \} \\
\delta(\mathrm{q} 1,0)-->\{ \} & \delta(\mathrm{q} 2,0)-->\{q 2\} & \delta(\mathrm{q} 3,0)-->\{ \} \\
\delta(\mathrm{q} 1,1)-->\{q 2, q 3\} & \delta(\mathrm{q} 2,1)-->\{ \} & \delta(\mathrm{q} 3,1)-->\{ \}
\end{array}
$$

4. q 1 is the start state
5. $\mathrm{F}=\{\mathrm{q} 2, \mathrm{q} 3\}$

## Formal Definition of Accepts

- To define what it means for an NFA to accept we can modify the definition of $\delta^{*}$ so that it works on a set of states. i.e., $\delta^{*}\left(q_{i}, w\right)=Q_{j}$, where $Q_{j}$ is the set of possible state one could be in after processing $w$ starting in state $\mathrm{q}_{\mathrm{i}}$.
- We say M accepts w then if $\delta^{*}\left(q_{0}, w\right) \cap F$ is nonempty.
- We write $\mathrm{L}(\mathrm{M})$ for the set of strings M accepts.

