
Proofs, Strings, and Finite
Automata

CS154
Chris Pollett
Feb 5, 2007.

Outline

• Proofs and Proof Strategies
• Strings

Finding proofs
• Example: For every graph G, the sum of the degrees of all the nodes in G is an

even number.
– Might approach problem by checking cases like when graph has a small

number of vertices. One might then notice each edge contributes two to the
total sum and that the sum of degrees = 2·(number of edges in graph).

• Types of proofs:
– by construction: example, there is a graph consisting of n nodes with only

one cycle. Proof: let V={1,..,n}, let E={{1,2}, {2,3}, …{n-1,n}}∪{{1,n}}.
– by contradiction: example 21/2 is not a rational number. Idea

if not can assume 21/2 = m/n where m and n share no common factor. In
which case, one is odd, the other even. Squaring both sides gives: 2n2 =
m2, so m is even because square of an odd number is odd. So m=2k, so
2n2 = (2k)2= 4k2. So n2= 2k2 implying n is also even, giving a
contradiction.

– by induction: Show ∑n
i=1 i = n(n+1)/2

Base case: For n=1 we have ∑1
i=1 i =1 = 1(1+1)/2.

Induction step: Assume ∑n
i=1 i = n(n+1)/2 holds, we want to show

∑n+1
i=1 i = (n+1)(n+2)/2. Notice ∑n+1

i=1 i = ∑n
i=1 i + (n+1). By our

hypothesis, this in turn equals n(n+1)/2 + (n+1). Making the
denominators the same, this is:

[n(n+1) + 2(n+1)]/2 = (n+1)(n+2)/2.
Conclude the induction holds. So for all n, ∑n

i=1 i = n(n+1)/2 is true.

Strings
• Strings of characters are one of the fundamental building blocks of computer

science.
• For this class, we will define an alphabet to be some nonempty finite set. For

example,
Σ = {0, 1}
Σ = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}

• The members of this set are called the symbols of the alphabet.
• A string over an alphabet is a finite sequence of symbols from that alphabet.

For example, 0100. Here 0111 abbreviates the formal sequence (0,1,1,1)
• The length of a string w, |w| is the number of symbols it contains. For

example, |0100| = 4
• The empty string is written as λ (in many other books it is written as ε).

Strings and Languages
• The reverse of a string w, wR, is the string consists of the

symbols of w in reverse order: 001R = 100.
• A string is z is a substring of w if z appear consecutively

within w. So 011 is a substring 1001101.
• The concatenation of two string x and y, xy, is the string

consisting of the symbols in x followed by the symbols of
y.

• In the string, xy, x would be called the prefix; y would be
called the suffix.

• We write xk to denote x concatenated to itself k times.
• A language is a set of string.

Example Languages

• Suppose ∑={0,1} is our alphabet.
• Then L= {1, 11, 101} is an example language.
• We write ∑* for the set of all strings over ∑.
• Given a language L, we define:

L0 = {λ},
Ln+1= {wv | w ∈ Ln ∧ v∈ L}.
L*=Un≥0 Ln.
L+ = L L*

• Given these definitions for the L above, we have λ is L*,
but not in L+ , we have 11101 is in L2, we have 1110111 is
in L3, L*, and L+, but not L2.

Machines

• We will now begin our study of how to
build machines which can recognize
languages.

• As a prelude, I will demo JFLAP now.
• To download JFLAP please use the link on

the class page.

Running JFLAP
• When you launch JFLAP you get a

window like:
• For now we will be using the Finite

Automaton button.
• Clicking it will give a window like:
• The four buttons across the top of the

edit area allow one to: (1) select a
state, (2) create a state, (3) create a
transitions, (4) delete a state or
transition

• You can save the automaton you make
using the File menu.

Introductory Examples

• Finite automata are computer models which are
useful when one has very limited memory
availability.

• Consider an automatic door say at a grocery store.

• We can model the door state this using a finite
automata:

Outside
Pad

Inside
Pad

Door

Closed Open

Outside
Inside or
neither
pressed Neither

Either or
both
pressed

More on Door Example
• The controller might start in a CLOSED state and receive the signals:

OUTSIDE, INSIDE, NEITHER, INSIDE, BOTH, OUTSIDE, INSIDE
NEITHER.

• It would then transition between the states CLOSED (start), OPEN,
OPEN, CLOSED, CLOSED, CLOSED, OPEN, OPEN, CLOSED.

• Notice only need 1-bit of memory to keep track of state.
• It is also straightforward to represent transitions in a table:

• Finite automata and the their probabilistic counterparts called Markov
chains are also useful for pattern recognition. For example,
recognizing keywords in programming languages. Or figuring out
which word English is likely based on the previous ones seen.

Neither Outside Inside Both
Closed
Open

Closed
Closed

Open
Open

Closed
Open

Closed
Open

Running an Automaton in JFLAP on
Different Inputs

• We can build the automaton we just
discussed in JFLAP.

• We’ll use i for inside, o for outside, n for
neither, and b for both.

• To test this automaton on some inputs we
first need to say what state it starts in by right
clicking on a state and setting it to be a start
state.

• If we want to say what final states should be
viewed as good (aka accepting) we can also
do this by right-clicking.

• Then using the Input menu, we can select to
run the automaton Step by State.

• You will be prompted for an input to the
automaton, at which point you then get a
window that let’s you step through its
computation.

Names for things
• The picture we drew of our automata a couple slides back is called a state

diagram.
• We will usually use the variables M, N,… for machines.
• Here is another example machine M1:

• The start state is the state with an arrow going from nowhere into it.
• If we are recognizing strings then we stop processing when we get to the end

of a string of inputs.
• If we are in a double circled state at that point we accept the string otherwise

we reject it. So double circled states called accept states.
• Arrows going from one state to another are called transitions.
• You might want to see if you can figure out if the above automata accepts each

of the following strings: 000, 0110, 1101.

q1 q2 q3
1 0

0,1

0 1

Formal Definition
• A finite automaton is a 5-tuple (Q, ∑, δ, q0, F), where

1. Q is a finite set called the states.
2. ∑ is a finite set called the alphabet.
3. δ:Q x ∑ --> Q is the transition function.
4. q0∈ Q is the start state, and
5. F ⊆ Q is the set of accept states.

• The transition function tells us if we are in a given state
reading a given symbol what is the next state to go to.

