Diagonalization

CS154

Chris Pollett May 2, 2007.

Outline

- Diagonalization
- The Halting Problem is Undecidable

Introduction

- Recall last day we considered the language:
$\mathrm{A}_{\mathrm{TM}}=\{<\mathrm{M}, \mathrm{x}\rangle \mid \mathrm{M}$ is the encoding of a TM which when run on input x accepts $\}$.
- We gave a last day a procedure for a TM to recognize this language (this is what a Universal TM does) and we said that there is no procedure for a TM to decide this language.
- Today, we are going to prove this second statement.
- Before we do let's define a language to be recursive enumerable if there is some some TM which recognizes the language.
- Define a language to be decidable or recursive if there is some TM which decides the language.
- So we have shown A_{TM} is recursively enumerable and we'd like to show it is not decidable. To do this we need a slight digression...

Sizes of Sets

- In the 1870 's Georg Cantor was interested in figuring out when two sets are of the same size.
- In particular, he was worried about infinite sized sets.
- He argued two sets A, B should be said to be of the same size if there is a one-to-one, onto function (a bijection) between them.
- Recall one-to-one means $a \neq b$ implies $f(a) \neq f(b)$ and onto means for every element b in B, there is some a in A such that $f(a)=b$.
- For example the map $f(k)=2 k$ is a bijection between the integers and the even integers.
- A set is said to be countable if there is a bijection between it and a subset of the naturals. Otherwise, a set is said to be uncountable.
- For example, the rational numbers and the set of finite strings over are $\{0,1\}$ are countable. (will doodle on board why, but also see book).

Diagonalization

- Suppose f is a one-to-one function from a countable set $\mathrm{A}=\{\mathrm{a}(0), \mathrm{a}(1), \mathrm{a}(2), \ldots\}$ to sequences of elements over some set B of size at least 2 , such that the length of the sequence $f(a(i))$ is at least i.
- For example,

$$
\begin{aligned}
& \mathrm{f}(\mathrm{a}(0))=(1, \mathrm{e}, 1) \\
& \mathrm{f}(\mathrm{a}(1))=(0,0, \mathrm{e}) \\
& \mathrm{f}(\mathrm{a}(2))=(0, \mathrm{o}, 1)
\end{aligned}
$$

- Let $\mathrm{f}(\mathrm{a}(\mathrm{i}))_{\mathrm{j}}$ denote the jth element of the sequence $\mathrm{f}(\mathrm{a}(\mathrm{i}))$.
- The diagonal of this function is the function of f is the sequence $\mathrm{d}(\mathrm{f})=\left(\mathrm{f}(\mathrm{a}(0))_{0}, \mathrm{f}(\mathrm{a}(1))_{1}, \mathrm{f}(\mathrm{a}(2))_{2}, \ldots\right)$.
- \quad So in this case $d(f)=(1,0,1)$.
- Call a sequence $d^{\prime}(f)$ a complement of the diagonal if $d^{\prime}(f)_{i}$ is always different from $d(f)_{i}$.
- For example, for the f above a possible d'(f) is $(0,1,0)$.
- The following theorem is an easy consequence of our definition.

Theorem (Diagonalization Theorem) If f satisfies the first bullet above then it does not map any element to a complement of its diagonal.

Example Use of the Diagonalization Theorem

Corollary. A countable set A is not the same size as its $\mathrm{P}(\mathrm{A})$.
Proof. Let $\mathrm{f}: \mathrm{A}-->\mathrm{P}(\mathrm{A})$ be a supposed bijection. Since A is countable, we have some function $a(k)$ to list out its elements $a(0), a(1), a(2), \ldots A n$ element $\{\mathrm{a}(2), \mathrm{a}(5), ..\} \in \mathrm{P}(\mathrm{A})$ can be view as an binary sequence $(0,0$, $1,0,0,1, \ldots)$ where we have a 1 if $\mathrm{a}(\mathrm{i})$ is in $\mathrm{P}(\mathrm{A})$ and a 0 otherwise. So f satisfies the Diagonalization theorem. A complement of the diagonal for f will still be in $P(A)$ but not mapped to by f.

- A set which is not countable is uncountable.
- Let \mathbf{N} be the natural numbers. $\operatorname{So} \operatorname{P}(\mathbf{N})$ is uncountable.

Non Recursively Enumerable Languages

Another corollary to the Diagonalization Theorem is the following:
Corollary. Some languages are not recursive enumerable.
Proof. The set of infinite sequences over $\{0,1\}$ is uncountable, as we just indicated in the last proof there is a bijection between this set and $\mathrm{P}(\mathrm{N})$. On the other hand, each encoding $<\mathrm{M}>$ of a Turing Machine is a finite string over a finite alphabet and we argued earlier today that the set of finite strings over an alphabet is countable.

A_{TM} is not Recursive

Theorem. The language $\mathrm{A}_{\mathrm{TM}}=\{\langle M, w\rangle \mid M$ is a TM and M halts on $w\}$ is not recursive. Proof. Suppose A is a decider for A_{TM}. Fix M_{i} and consider w's of the form $<\mathrm{M}_{\mathrm{j}}>$ for some other TM, M_{i}. Then listing out encodings of TM's in lex order $<\mathrm{M}_{0}>,<\mathrm{M}_{1}>$,.. we can create an infinite binary sequence where we have a 1 in the j th slot if $\left\langle M_{j}\right\rangle$ causes M_{i} to halt and a 0 otherwise. If A is a decider $\mathrm{A}_{\text {TM }}$ then we can consider a variant on the complement of the diagonal of the map $\mathrm{f}:<\mathrm{M}_{\mathrm{i}}>\mid-->\left(\mathrm{A}\left(<\mathrm{M}_{\mathrm{i}},<\mathrm{M}_{0}>\right)\right.$, $\mathrm{A}\left(<\mathrm{M}_{\mathrm{i}},<\mathrm{M}_{1} \gg\right)$,..). In particular, we can let D be the machine: $D=$ "On input $\langle M\rangle$, where M is a TM:

- Run H on input $\langle M,<M \gg$
- If H says Yes, then run forever. If H says no, then say halt and accept."

Now consider $D(<D>)$. Machine D halts if and only if A on input $<\mathrm{D},<\mathrm{D} \gg$ rejects. But A on input $<\mathrm{D},<\mathrm{D} \gg$ rejects means that D did not halt on input $<\mathrm{D}\rangle$. This is contradictory. A similar argument can be made about if D does not halt $<\mathrm{D}>$. Since assuming the existence of A leads to a contradiction, hence A must not exist. Q.E.D.

Another way to look at this is if you give an A which purports to be a decider for A_{TM} then we can give a specific input, $\langle\mathrm{D},\langle\mathrm{D}\rangle>$, which is calculated based on A on which A fails.

