Diagonalization

CS154
Chris Pollett
May 2, 2007.

Outline

e Diagonalization
e The Halting Problem 1s Undecidable

Introduction

Recall last day we considered the language:

A ={<M,x>| M is the encoding of a TM which when run on input x
accepts}.

We gave a last day a procedure for a TM to recognize this language
(this 1s what a Universal TM does) and we said that there is no
procedure for a TM to decide this language.

Today, we are going to prove this second statement.

Before we do let’s define a language to be recursive enumerable if
there 1s some some TM which recognizes the language.

Define a language to be decidable or recursive if there is some TM
which decides the language.

So we have shown Ar,,1s recursively enumerable and we’d like to
show it 1s not decidable. To do this we need a slight digression...

Si1zes of Sets

In the 1870°s Georg Cantor was interested in figuring out when two
sets are of the same size.

In particular, he was worried about infinite sized sets.

He argued two sets A, B should be said to be of the same size if there
1S a one-to-one, onto function (a bijection) between them.

Recall one-to-one means a # b implies f(a) # f(b) and onto means for
every element b in B, there is some a in A such that f(a) = b.

For example the map f(k)=2k 1s a bijection between the integers and
the even integers.

A set is said to be countable if there is a bijection between it and a
subset of the naturals. Otherwise, a set is said to be uncountable.

For example, the rational numbers and the set of finite strings over are
{0,1} are countable. (will doodle on board why, but also see book).

Diagonalization

Suppose f is a one-to-one function from a countable set A={a(0), a(1), a(2), ...} to sequences of
elements over some set B of size at least 2, such that the length of the sequence f(a(i)) is at least 1.

For exam
f(a(0)) =\(1.Q, 1)
f(a(1)) = (0
f(a(2)) = (0,

Let f(a(i))j denote the jth element of the sequence f(a(i)).

The diagonal of this function is the function of f is the sequence d(f)=(f(a(0)),, f(a(1)),, f(a(2)),,...).
So in this case d(f) = (1, 0, 1).

Call a sequence d’(f) a complement of the diagonal if d’(f), is always different from d(f),.

For example, for the f above a possible d’(f) is (0, 1, 0).

The following theorem is an easy consequence of our definition.

Theorem (Diagonalization Theorem) If f satisfies the first bullet above then it does not map any element

to a complement of its diagonal.

Example Use of the Diagonalization Theorem

Corollary. A countable set A is not the same size as its P(A).
Proof. Let f:A --> P(A) be a supposed bijection. Since A is countable, we

have some function a(k) to list out its elements a(0), a(1), a(2), ...An
element {a(2), a(d), .. }&P(A) can be view as an binary sequence (0, 0,
1,0,0, 1, ...) where we have a 1 if a(1) 1s in P(A) and a O otherwise. So
f satisfies the Diagonalization theorem. A complement of the diagonal
for f will still be in P(A) but not mapped to by f.

A set which is not countable is uncountable.
Let N be the natural numbers. So P(N) is uncountable.

Non Recursively Enumerable
LLanguages

Another corollary to the Diagonalization Theorem is the following:
Corollary. Some languages are not recursive enumerable.

Proof. The set of infinite sequences over {0,1} is uncountable, as we
just indicated in the last proof there is a bijection between this set
and P(N). On the other hand, each encoding <M> of a Turing
Machine is a finite string over a finite alphabet and we argued
earlier today that the set of finite strings over an alphabet is
countable.

Ay 18 not Recursive

Theorem. The language A= {<M,w>| M is a TM and M halts on w} is not recursive.

Proof. Suppose A is a decider for Ary;. Fix M; and consider w’s of the form <M;> for
some other TM, M;. Then listing out encodings of TM’s in lex order <M,>, <M>.,..
we can create an infinite binary sequence where we have a 1 in the jth slot if <M;>
causes M; to halt and a O otherwise. If A is a decider Ay, then we can consider a
variant on the complement of the diagonal of the map f:<M;> |--> (A(<M;,<M>),
A(<M,,<M>>),..). In particular, we can let D be the machine:

D=“On input <M>, where M is a TM:

— Run H on input <M, <M>>

— If H says Yes, then run forever. If H says no, then say halt and accept.”
Now consider D(<D>). Machine D halts if and only if A on input <D, <D>>
rejects. But A on input <D, <D>> rejects means that D did not halt on input <D>.
This is contradictory. A similar argument can be made about if D does not halt
<D>. Since assuming the existence of A leads to a contradiction, hence A must not

exist. Q.E.D.

Another way to look at this is if you give an A which purports to be a decider

for Ay, then we can give a specific input, <D, <D>>, which is calculated based on
A on which A fails.

