Yet More PDASs

CS154
Chris Pollett
pr 2, 2007.

e

Outline

Ditterent proof that for recognized by PDA
=>CFL.

Grammars for DCFLs
Pumping Lemma for CFLs

My laptop died so there will be no JFLAP
demo today.

Different proof that recognized
by PDA => CFL

Last day, we gave a proof that being recognized
by a PDA => CFL.

Today, we will look at a different proof.

In this case the resulting grammar will be
Greibach Normal Form.

So since we have already shown CFL =>
recognized by PDA, this will show every CFL is
equivalent to one in Greibach Normal Form.

Simplifying Assumptions

e LetM be a PDA

* Asin our first proof, we will make some simplifying assumptions:
— It was a single final accept state q, which is entered iff the stack is empty.

— For acY U{A}, all transitions must have the form d(q;,, a, A) ={c,..., ¢},
where ci=(qj, \) or ci=(qj, BC), so a move at most increases or decreases
the stack size by 1.

e [t turns out any language recognized by PDA can be recognized by a
PDA with these restrictions: We can take a PDA and modity it with
two new states empty string transitions from the old final states to the
first new state, transitions that empty the stack in this state, then a
transition from this state to the second new state which is a final state.
Similarly, we can split up a more complicated stack move into a
sequence of single character stack moves to handle the second case.

Theorem

If L=L(M) for some PDA M, then L is CFL.

Proof. Assume M satisfies the simplifying assumptions. Let g, be the
initial state. The variables of our grammar will be of the form (q;Aq;)
where q; and q; are states of M and where A is a stack symbol. This 1s
supposed to represent one can transition from g; q; by a sequence of
moves, removing A from the top of the stack. Our start variable will be
(9o 3, q;) where §$ is the start of stack symbol. We will then have the
productions: (q;Aq) ->a if (q;, A\) 1s in d(q;, a, A). This handles the first
type of rule. And we will have productions (q;Aq)-->a(q;Bq,) (q,Cqy)
to handle transitions where (q;, BC) is in d(q;, a, A). We have this for
each state k. Notice this grammar 1s in Greibach Normal form since
each production begins with a terminal which is followed by a string
of variables.

Grammars for DCFLs

Last day we examined deterministic PDAs whose
languages are called the deterministic CFLs.

We said these languages are important for
compilers because one could hope to get parsers
for them which run in closer to linear time then to
cubic time.

Although DPDASs don’t have nondeterministic
moves they do have empty state transitions.

It 1s interesting to ask what grammars correspond
to DPDASs?

Grammars for DCFLs cont’d

Recall s-grammars have rules of the form A-->ax where X is a string of
variables and where each pair (A, a) occurs in at most one rule.

If we apply our construction CFL=> PDA to such a grammar we will
get a DPDA.

Essentially, while scanning a string w left to right we only need to look
at the next character to determine which rule to use.

However, there are more grammars for which this 1s true, in particular
those where we can look ahead k symbols and fix the rule.

For instance, say a grammar 1s an LL(k) grammar if whenever we have
two leftmost derivations of a string S=>wAx =>wyx=> ..=> ws and
S=>wAv =>wzv=> ..=> wt, the equality of the k leftmost symbols of s
and t implies y and z are equal.

LL(k) grammars and LR grammars are what are
actually used 1n compilers.

Languages that are not Context
Free

e We can prove languages are not context free by using the
Pumping Lemma for context-free languages:

Pumping Lemma for Context Free Languages: If A is a
context free language, then there 1s a number p (the
pumping length) where, if s 1s any string A of length at
least p, then s maybe divided into five pieces s= uvxyz
satisfying the conditions:

1. for each i>=0, uvixy'z is in A.
2. lvyl >0, and
3. lvxyl <=p.

Example use of the CFL
Pumping Lemma

Let C = {albick |0 <=i<=j <=k}

Argue by contradiction. Let p be the pumping length of C and consider the string
s=aPbPcP.

Then s can be written as uvxyz. There are two cases:

1. Both v and y contain only one type of alphabet symbol. So one of a, b, or ¢ does
not appear in v or y. So there are three subcases

a) The a’s do not appear. By the pumping lemma, uv’xy’z= uxz must be in the
language. This string has the same number of a’s but fewer b’s or ¢’s so
cannot be in C giving a contradiction.

b) The b’s do not appear. Then either a’s or ¢’s must appear in vand y. If a’s
appear, then uv>xy?z will have more a’s then b’s giving a contradiction. If
¢’s appear, then uv’xy%z will have more b’s then ¢’s giving a contradiction.

c) The ¢’s do not appear. Then uv?xy?z will have more a’s or b’s then ¢’s
giving a contradiction.

2. When either v or y contain more than one symbol uv?xy?z will not contain the
symbols in the right order giving a contradiction.

