Yet More PDAs

CS154
Chris Pollett
Apr 2, 2007.

Outline

- Different proof that for recognized by PDA $=>C F L$.
- Grammars for DCFLs
- Pumping Lemma for CFLs
- My laptop died so there will be no JFLAP demo today.

Different proof that recognized by PDA => CFL

- Last day, we gave a proof that being recognized by a PDA => CFL.
- Today, we will look at a different proof.
- In this case the resulting grammar will be Greibach Normal Form.
- So since we have already shown CFL => recognized by PDA, this will show every CFL is equivalent to one in Greibach Normal Form.

Simplifying Assumptions

- Let M be a PDA
- As in our first proof, we will make some simplifying assumptions:
- It was a single final accept state q_{f} which is entered iff the stack is empty.
- For $\mathrm{a} \in \sum \cup\{\lambda\}$, all transitions must have the form $\partial\left(\mathrm{q}_{\mathrm{i}}, \mathrm{a}, \mathrm{A}\right)=\left\{\mathrm{c}_{1}, . ., \mathrm{c}_{\mathrm{m}}\right\}$, where $\mathrm{c}_{\mathrm{i}}=\left(\mathrm{q}_{\mathrm{j}}, \lambda\right)$ or $\mathrm{c}_{\mathrm{i}}=\left(\mathrm{q}_{\mathrm{j}}, B C\right)$, so a move at most increases or decreases the stack size by 1 .
- It turns out any language recognized by PDA can be recognized by a PDA with these restrictions: We can take a PDA and modify it with two new states empty string transitions from the old final states to the first new state, transitions that empty the stack in this state, then a transition from this state to the second new state which is a final state. Similarly, we can split up a more complicated stack move into a sequence of single character stack moves to handle the second case.

Theorem

If $L=L(M)$ for some PDA M, then L is CFL.
Proof. Assume M satisfies the simplifying assumptions. Let q_{0} be the initial state. The variables of our grammar will be of the form $\left(q_{i} A q_{j}\right)$ where q_{i} and q_{j} are states of M and where A is a stack symbol. This is supposed to represent one can transition from $q_{i} q_{j}$ by a sequence of moves, removing A from the top of the stack. Our start variable will be $\left(q_{0} \$, q_{f}\right)$ where $\$$ is the start of stack symbol. We will then have the productions: $\left(q_{i} A q_{j}\right)->$ a if $\left(q_{j}, \lambda\right)$ is in $\partial\left(q_{i}, a, A\right)$. This handles the first type of rule. And we will have productions $\left(q_{i} A q_{j}\right)-->a\left(q_{j} B q_{1}\right)\left(q_{1} \mathrm{Cq}_{\mathrm{k}}\right)$ to handle transitions where $\left(q_{j}, B C\right)$ is in $\partial\left(q_{i}, a, A\right)$. We have this for each state k. Notice this grammar is in Greibach Normal form since each production begins with a terminal which is followed by a string of variables.

Grammars for DCFLs

- Last day we examined deterministic PDAs whose languages are called the deterministic CFLs.
- We said these languages are important for compilers because one could hope to get parsers for them which run in closer to linear time then to cubic time.
- Although DPDAs don't have nondeterministic moves they do have empty state transitions.
- It is interesting to ask what grammars correspond to DPDAs?

Grammars for DCFLs cont'd

- Recall s-grammars have rules of the form A-->ax where x is a string of variables and where each pair (A, a) occurs in at most one rule.
- If we apply our construction $\mathrm{CFL}=>$ PDA to such a grammar we will get a DPDA.
- Essentially, while scanning a string w left to right we only need to look at the next character to determine which rule to use.
- However, there are more grammars for which this is true, in particular those where we can look ahead k symbols and fix the rule.
- For instance, say a grammar is an LL(k) grammar if whenever we have two leftmost derivations of a string $S=>w A x=>w y x=>$.. $=>$ ws and $S=>w A v=>w z v=>. .=>w t$, the equality of the k leftmost symbols of s and t implies y and z are equal.
- LL(k) grammars and LR grammars are what are actually used in compilers.

Languages that are not Context Free

- We can prove languages are not context free by using the Pumping Lemma for context-free languages:

Pumping Lemma for Context Free Languages: If A is a context free language, then there is a number p (the pumping length) where, if s is any string A of length at least p, then s maybe divided into five pieces $s=u v x y z$ satisfying the conditions:

1. for each $i>=0, u v^{i} x y^{i} z$ is in A.
2. $\mid \mathrm{vyl}>0$, and
3. $|v x y|<=p$.

Example use of the CFL Pumping Lemma

- Let $\mathrm{C}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} c^{\mathrm{k}} \mid 0<=\mathrm{i}<=\mathrm{j}<=\mathrm{k}\right\}$
- Argue by contradiction. Let p be the pumping length of C and consider the string $\mathrm{s}=\mathrm{a}^{\mathrm{P}} \mathrm{b}^{\mathrm{P}}{ }^{\mathrm{P}}$.
- Then s can be written as uvxyz. There are two cases:

1. Both v and y contain only one type of alphabet symbol. So one of a, b, or c does not appear in v or y. So there are three subcases
a) The a's do not appear. By the pumping lemma, $u v^{0} x^{0} y^{0} z=u x z$ must be in the language. This string has the same number of a's but fewer b's or c's so cannot be in C giving a contradiction.
b) The b's do not appear. Then either a's or c's must appear in v and y. If a's appear, then $u v^{2} \mathrm{xy}^{2} \mathrm{z}$ will have more a's then b's giving a contradiction. If c's appear, then $u v^{0} \mathrm{xy}^{0} \mathrm{z}$ will have more b's then c's giving a contradiction.
c) The c's do not appear. Then $u v^{2} x y^{2} z$ will have more a's or b's then c's giving a contradiction.
2. When either v or y contain more than one symbol $u v^{2} x y^{2} z$ will not contain the symbols in the right order giving a contradiction.
