
Yet More PDAs

CS154
Chris Pollett
Apr 2, 2007.

Outline

• Different proof that for recognized by PDA
=>CFL.

• Grammars for DCFLs
• Pumping Lemma for CFLs

• My laptop died so there will be no JFLAP
demo today.

Different proof that recognized
by PDA => CFL

• Last day, we gave a proof that being recognized
by a PDA => CFL.

• Today, we will look at a different proof.
• In this case the resulting grammar will be

Greibach Normal Form.
• So since we have already shown CFL =>

recognized by PDA, this will show every CFL is
equivalent to one in Greibach Normal Form.

 Simplifying Assumptions
• Let M be a PDA
• As in our first proof, we will make some simplifying assumptions:

– It was a single final accept state qf which is entered iff the stack is empty.
– For a∈∑ ∪{λ}, all transitions must have the form ∂(qi, a, A) ={c1,.., cm},

where ci=(qj, λ) or ci=(qj, BC), so a move at most increases or decreases
the stack size by 1.

• It turns out any language recognized by PDA can be recognized by a
PDA with these restrictions: We can take a PDA and modify it with
two new states empty string transitions from the old final states to the
first new state, transitions that empty the stack in this state, then a
transition from this state to the second new state which is a final state.
Similarly, we can split up a more complicated stack move into a
sequence of single character stack moves to handle the second case.

Theorem
If L=L(M) for some PDA M, then L is CFL.
Proof. Assume M satisfies the simplifying assumptions. Let q0 be the

initial state. The variables of our grammar will be of the form (qiAqj)
where qi and qj are states of M and where A is a stack symbol. This is
supposed to represent one can transition from qi qj by a sequence of
moves, removing A from the top of the stack. Our start variable will be
(q0 $, qf) where $ is the start of stack symbol. We will then have the
productions: (qiAqj) -> a if (qj, λ) is in ∂(qi, a, A). This handles the first
type of rule. And we will have productions (qiAqj)-->a(qjBql) (ql Cqk)
to handle transitions where (qj, BC) is in ∂(qi, a, A). We have this for
each state k. Notice this grammar is in Greibach Normal form since
each production begins with a terminal which is followed by a string
of variables.

Grammars for DCFLs

• Last day we examined deterministic PDAs whose
languages are called the deterministic CFLs.

• We said these languages are important for
compilers because one could hope to get parsers
for them which run in closer to linear time then to
cubic time.

• Although DPDAs don’t have nondeterministic
moves they do have empty state transitions.

• It is interesting to ask what grammars correspond
to DPDAs?

Grammars for DCFLs cont’d
• Recall s-grammars have rules of the form A-->ax where x is a string of

variables and where each pair (A, a) occurs in at most one rule.
• If we apply our construction CFL=> PDA to such a grammar we will

get a DPDA.
• Essentially, while scanning a string w left to right we only need to look

at the next character to determine which rule to use.
• However, there are more grammars for which this is true, in particular

those where we can look ahead k symbols and fix the rule.
• For instance, say a grammar is an LL(k) grammar if whenever we have

two leftmost derivations of a string S=>wAx =>wyx=> ..=> ws and
S=>wAv =>wzv=> ..=> wt, the equality of the k leftmost symbols of s
and t implies y and z are equal.

• LL(k) grammars and LR grammars are what are
actually used in compilers.

Languages that are not Context
Free

• We can prove languages are not context free by using the
Pumping Lemma for context-free languages:

Pumping Lemma for Context Free Languages: If A is a
context free language, then there is a number p (the
pumping length) where, if s is any string A of length at
least p, then s maybe divided into five pieces s= uvxyz
satisfying the conditions:

1. for each i>=0, uvixyiz is in A.
2. |vy| > 0, and
3. |vxy| <= p.

Example use of the CFL
Pumping Lemma

• Let C = {aibjck | 0 <= i <=j <= k}
• Argue by contradiction. Let p be the pumping length of C and consider the string

s=apbpcp.
• Then s can be written as uvxyz. There are two cases:

1. Both v and y contain only one type of alphabet symbol. So one of a, b, or c does
not appear in v or y. So there are three subcases

a) The a’s do not appear. By the pumping lemma, uv0xy0z= uxz must be in the
language. This string has the same number of a’s but fewer b’s or c’s so
cannot be in C giving a contradiction.

b) The b’s do not appear. Then either a’s or c’s must appear in v and y. If a’s
appear, then uv2xy2z will have more a’s then b’s giving a contradiction. If
c’s appear, then uv0xy0z will have more b’s then c’s giving a contradiction.

c) The c’s do not appear. Then uv2xy2z will have more a’s or b’s then c’s
giving a contradiction.

2. When either v or y contain more than one symbol uv2xy2z will not contain the
symbols in the right order giving a contradiction.

