









 













 




 

 
 
 
 








 





 









 




 












 
 





 








 

 



  
 










!"#$%&'()*%!+,-&%).%

G:
 S ! aABB|aAA,
 A ! aBB|a,
 B ! bBB|A.

The production B ! A is not in Greibach form. So first we convert this to Greibach form
we substitute A with its production, so that B ! aBB|a. So the G can be written in
Greibach for as follows:

G:
 S ! aABB|aAA,
 A ! aBB|a,
 B ! bBB|aBB|a.

We can now construct an npda M corresponding to G, where

M = ({q0,q1,qf},T,V ! {z},!,q0,z,{qf}), where z " V.

The input alphabet of M is identical with the set of terminals of G, i.e. T = {a,b}.
The stack alphabet contains the variables of the grammar, i.e. V = {S,A,B,z}

First we have the following rules relating to the initial and final states.

!(q0,#,z) = {(q1,Sz)},
!(q1,#,z) = {(qf,z)}.

Now we write rules for each production. For example,

Rule for S ! aABB is !(q1,a,S) = {(q1,ABB)} and
Rule for A ! a is !(q1,a,A) = {(q1, #)}.

Following similar procedure, we can find rules for other productions. So we can write the
npda for G as follows:

!(q0,#,z) = {(q1,Sz)},
!(q1,a,S) = {(q1,ABB), (q1,AA)},
!(q1,a,A) = {(q1,BB), (q1, #)},
!(q1,b,B) = {(q1,BB)},
!(q1,a,B) = {(q1,BB), (q1, #)},

 !(q1,#,z) = {(qf,z)}.

!"#$&%'(/*%!+,-&%').%

Given the npda M = ({q0,q1},{a,b},{A,z},!,q0,z,{q1}), with transitions

 !(q0,a,z) = {(q0,Az)},
 !(q0,b,A) = {(q0,AA)},
 !(q0,a,A) = {(q1, #)}.

First we note that although the npda M has single accept state, it is not entered when the
stack is empty. In order to satisfy the condition that the single accept state should be
entered if and only if the stack is empty, we introduce a new state q2 and an intermediate
step in which we first remove the A from the stack to go the new state q2 and then in next
move we go from q2 to the final state q1 with the empty stack. So the new set of transition
rules is

 !(q0,a,z) = {(q0,Az)},
 !(q0,b,A) = {(q0,AA)},
 !(q0,a,A) = {(q2, #)}.
 !(q2,#,z) = {(q1, #)}.

Also we note that the condition that each move either increases or decreases the stack
content by a single symbol is satisfied for both the given and the new transition rules.

Let us denote the variable (qiAqj) by Aij and the variable (qizqj) by Bij

For the last two transition rules yield the following productions:

 A02 ! a,

B21 ! #.

For the first transition rule, we can write the following productions:

 B00 ! aA00B00 | aA01B10 | aA02B20,

B01 ! aA00B01 | aA01B11 | aA02B21,
B02 ! aA00B02 | aA01B12 | aA02B22.

Similarly for the 2nd transition rule, we can write the following productions:

A00 ! bA00A00 | bA01A10 | bA02A20,
A01 ! bA00A01 | bA01A11 | bA02A21,
A02 ! bA00A02 | bA01A12 | bA02A22.

Now we note that the variables B10, B11,B12, B20, B22, A10,A11,A12,A20,A21 and A22 do not
occur on the left side and we can eliminate the productions that contain these variables.
Therefore we are left with the context-free grammar with following productions:

!"#$%&%0'0*%!+,-&%1.%

12-3.%

L = {anbjakbl : n+j $ k+l} is context free, as we can easily find an npda M for this
language as follows:

M = ({q0,q1,q2,q3,q4,q5},{a,b},{0,z},!,q0,z,{q1}), and the transitions are

 !(q0,#,#) = (q1,z),
 !(q1,a, #) = (q1,0),
 !(q1,b, #) = (q2, 0),

!(q2,b, #) = (q2, 0),
!(q2,a, 0) = (q3, #),
!(q3,a, 0) = (q3, #),
!(q3,b, 0) = (q4, #),
!(q4,b, 0) = (q4, #),
!(q4,#, 0) = (q4, #),
!(q4,#,z) = (q5, #).

12$3.%

L = {anbjakbl : n $ k, j $ l} is NOT context free, as we can find contradiction to the
pumping lemma as follows:

Consider pumping length m and the string w = ambmambm

Assume L is context free, then by pumping lemma, w = uvxyz, where |vxy| $ m, |vy| % 1.
Now vxy cannot contain characters a,b from more than two adjacent groups, as alternate
groups are separated at least by m characters. It can be shown that for any choice of vxy,
we pump vy to violate at least one of the conditions n $ k and j $ l. For example, if we
choose vxy from 2nd group of b and 3rd group of a, then we can pump up so that j % l. So
the pumped string is not in L, which is a contradiction.

1243.%

L = {anbncj : n $ j } is NOT context free as can be shown by pumping lemma.

Consider pumping length m and the string w = ambmcm.
Now, any choice of vxy cannot involve all a,b and c, since a and c are separated by m
characters. Therefore, by pumping appropriately we can always violate the condition
 n $ j or the condition |a| = |b|.

A02 ! a,
B21 ! #,

 B00 ! aA00B00,
B01 ! aA00B01 | aA02B21,
B02 ! aA00B02,
A00 ! bA00A00,
A01 ! bA00A01,
A02 ! bA00A02.

12#3.%

L = { w &{a,b,c}* : na(w) = nb(w) = 2nc(w)} is NOT context-free as we can argue that we
cannot construct an npda for L.

If we try to construct an npda such that we push twice when reading c, and pop once
when reading a or b then we get 2nc(w) = na(w)+nb(w), but there is no way to tell whether
na(w) = nb(w). On the other hand, if we construct the npda such that na(w) = nb(w), then
there is no way to tell if na(w) = 2nc(w)}.

