
1. Show step-by-step how the string 00001001001 would be compressed by the 

SEQUITUR algorithm. 

 
 

2. Draw a PDA for the language L over {0,1} consisting of strings with twice as many 0's 

as 1's (0.5pt). So 001010001 would be in this language. Next draw a DFA 

recognizing 0⋆1⋆ (0.5pt). Use the algorithm from class to draw a PDA for the 

intersection of these two languages (1pt). 
PDA: 

 
If the PDA reads a 0, it pushes 0 or pops 1. If it reads a 1, it pushes two 1’s or pops two 0’s or 

one of each. When the stack is empty, a string that has twice as many 0’s as 1’s will be accepted. 

 



DFA: 

 
0*1*. q0 is a start state and a final state. q1 is a final state. q2 is a trap state. 

 

Intersection: 

 
Strategy: Cartesian product of the two graphs (PDA & DFA) 

 

3. Draw a PDA for the language {𝑤𝑤𝑅∣∣w∈{0,1}⋆} (2pts). 

 
Initially we put a special symbol ‘$’ into the empty stack. At state q2, the w is being read. In 

state q3, each 0 or 1 is popped when it matches the input. If any other input is given, the PDA 

will go to a dead state. When we reach that special symbol ‘$’, we go to the accepting state q4. 

 

 

 

4. Show step-by-step how the algorithm from class for checking if a language of CFG is 

infinite would operate on the grammar you got for problem (1) in this group. 
Solution: 



- The grammar I got for problem (1) is A->00, B->A1, S->ABBB 

- First, eliminate ε-rules from G. There is no ε-rules, so move on to the next step. 

- Then, eliminate unit-productions from G. There are no unit-productions, so move on to the 

next step. 

- Then, eliminate useless symbols from G. There are no useless symbols, so move on to the 

next step. 

- S is the start symbol. The left derivation of the grammar:  

S->ABBB ->00A1A1A1->00001001001 

- We then construct a graph where (A,B) is an edge for two variables A, B in the graph iff 

A→xBy for some production in G. 

- For A->00, it contains no edges because A only gives terminals. We cannot construct a 

graph. 

- For B->A1, we construct a graph where (B,A) is an edge for two variables B, A in the graph 

iff B->xAy for some production in G, where x=null, y=1 

- For S->ABBB, we construct a graph where (S,A) is an edge for two variables S, A in the 

graph iff S->xAy for some production in G, where x=null, y=BBB.  

We can also construct a graph where (S,B) is an edge for two variables S, B in the graph iff 

S->xBy for some production in G, where x=A, y=BB; or x=AB, y=B; or x=ABB, y=null. 

- So, the graph will look like: 

 
- There is no cycle in the graph, so it can be concluded that the given grammar is not infinite. 

 

5. (a) Prove the language {w−w∣w∈{0,1}⋆} is not CFL. Here - is a symbol in the TM's 

alphabet (1pt). (b) Give the formal definition as a 6-tuple of a TM recognizing the 

language {w−w∣w∈{0,1}⋆} (0.5pt). Here - is a symbol in the TM's alphabet. (c) Show 

formally that your machine accepts the string 001−001 (0.5pt). 
(a) Proof: L={w−w∣w∈{0,1}*} is not CFL using pumping lemma. 

Suppose C was CFL. Then it has a pumping length p. Consider the string 𝑠 = 0𝑝1𝑝 − 0𝑝1𝑝 

According to the theorem taught in the class, if A is a context free language, then there is a  

number p (the pumping length) where, if s is any string in A of length at least p,  

then s may be divided into five pieces s = uvxyz satisfying the conditions: 

1. For each i ≥ 0, u𝑣𝑖x𝑦𝑖z is in C, 

2. ∣vy∣ > 0, and 

3. ∣vxy∣ ≤ p. 

       There are 5 cases to consider: 

Case 1: Neither v or y contains -. Otherwise, uv^0xy^0z does not contain -. Thus, the string s  

   can’t be a part of L. 

 

Case 2: If both v and y are nonempty and happen on the right side of -, the string s = uv^0xy^0z  



is not on the right side of -. Thus, the string s can’t be a member of L.  

 

Case 3: If both v and y are nonempty and happen on the left side of -, the string s = uv^0xy^0z  

is not on the left side of -. Thus, the string s can’t be a member of L. 

 

Case 4: If only one of either v or y is non-empty, we can look upon them as they both occurred  

at the same side of -. Thus, the string s can’t be a member of L. 

 

Case 5: If both v and y are nonempty and include the symbol -, then the third pumping lemma  

condition |vxy| ≤ p. We have v that consists of 1’s and y that consists of 0’s. Then 

uv^2xy^2z contains more 1’s on the right side than the left side.  

 

Since the string can’t be pumped using the pumping lemma conditions, the language L is not  

CFL. Proven. 

 

(b) A Turing Machine (TM) is a 6-tuple M = (Q, ∑, Γ, δ,  𝑞0, H), where: 

 
 Turning Machine is: 



  
 

(c) Consider the string 001-001 

1. ↓ 

001-001⊔⊔⊔.. 

Head starts at leftmost variable, see pointer 

 

2. X01-001⊔⊔⊔.. 

Record symbol and overwrite it with X 

Now continue to scan to the right, reject immediately if we encounter blank ⊔ before our - 

 

        ↓ 

3. X01-X01⊔⊔⊔.. 

When we encounter our middle symbol -, move right one more time and see if the current 

variable matches our recorded one (if it doesn’t match, reject) 

Overwrite current symbol with X  

 

        ↓ 

4. XX1-001⊔⊔⊔.. 

We are now on our second iteration of the algo, do the same thing, now moving one cell to the 

right and recording it with an X.  

 

        ↓ 

5. XX1-XX1⊔⊔⊔.. 

 

        ↓       

6. XXX-XX1⊔⊔⊔.. 

 

        ↓       

7. XXX-XXX⊔⊔⊔.. 

 

                    ↓ 

8. XXX-XXX⊔⊔⊔.. 



Continue to move, if 0 or 1 is encountered, reject. As we can see, a blank ⊔ is encountered, so 

we can ACCEPT. Thus our string is accepted by our machine and we have shown it formally 

using our algorithm.  

 

 

 

 


