Show step-by-step how the string 00001001001 would be compressed by the
SEQUITUR algorithm.
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. Draw a PDA for the language L over {0,1} consisting of strings with twice as many 0's
as 1's (0.5pt). So 001010001 would be in this language. Next draw a DFA
recognizing 0«1« (0.5pt). Use the algorithm from class to draw a PDA for the

intersection of these two languages (1pt).
PDA:

If the PDA reads a 0, it pushes 0 or pops 1. If it reads a 1, it pushes two 1’°s or pops two 0’s or
one of each. When the stack is empty, a string that has twice as many 0’s as 1’s will be accepted.



DFA:
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0*1*. qO0 is a start state and a final state. q1 is a final state. g2 is a trap state.

Intersection:
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Strategy: Cartesian product of the two graphs (PDA & DFA)

3. Draw a PDA for the language {ww?|lwe{0,1}+} (2pts).
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Initially we put a special symbol ‘$’ into the empty stack. At state q2, the w is being read. In
state g3, each 0 or 1 is popped when it matches the input. If any other input is given, the PDA
will go to a dead state. When we reach that special symbol ‘$’, we go to the accepting state q4.

4. Show step-by-step how the algorithm from class for checking if a language of CFG is

infinite would operate on the grammar you got for problem (1) in this group.
Solution:



The grammar | got for problem (1) is A->00, B->Al, S->ABBB

First, eliminate e-rules from G. There is no &-rules, so move on to the next step.

Then, eliminate unit-productions from G. There are no unit-productions, so move on to the
next step.

Then, eliminate useless symbols from G. There are no useless symbols, so move on to the
next step.

S is the start symbol. The left derivation of the grammar:

S->ABBB ->00A1A1A1->00001001001

We then construct a graph where (A,B) is an edge for two variables A, B in the graph iff
A—xBy for some production in G.

For A->00, it contains no edges because A only gives terminals. We cannot construct a
graph.

For B->A1, we construct a graph where (B,A) is an edge for two variables B, A in the graph
iff B->xAy for some production in G, where x=null, y=1

For S->ABBB, we construct a graph where (S,A) is an edge for two variables S, A in the
graph iff S->xAy for some production in G, where x=null, y=BBB.

We can also construct a graph where (S,B) is an edge for two variables S, B in the graph iff
S->xBy for some production in G, where x=A, y=BB; or x=AB, y=B; or x=ABB, y=null.
So, the graph will look like:

There is no cycle in the graph, so it can be concluded that the given grammar is not infinite.

. (a) Prove the language {w—w|we{0,1}+} is not CFL. Here - is a symbol in the TM's
alphabet (1pt). (b) Give the formal definition as a 6-tuple of a TM recognizing the
language {w—wlwe{0,1}+} (0.5pt). Here - is a symbol in the TM's alphabet. (c) Show
formally that your machine accepts the string 001001 (0.5pt).

(a) Proof: L={w—w|we{0,1}+} is not CFL using pumping lemma.

Suppose C was CFL. Then it has a pumping length p. Consider the string s = 0P1? — 0P 1P

According to the theorem taught in the class, if A is a context free language, then there is a
number p (the pumping length) where, if s is any string in A of length at least p,
then s may be divided into five pieces s = uvxyz satisfying the conditions:

1. Foreachi>0, uvixyiz isin C,

2. |vyl>0, and

3. lvxyl<p.

There are 5 cases to consider:

Case 1. Neither v or y contains -. Otherwise, uv*0xy”0z does not contain -. Thus, the string s

can’t be a part of L.

Case 2. If both v and y are nonempty and happen on the right side of -, the string s = uv"0xy”0z



is not on the right side of -. Thus, the string s can’t be a member of L.

Case 3: If both v and y are nonempty and happen on the left side of -, the string s = uv"0xy”0z
is not on the left side of -. Thus, the string s can’t be a member of L.

Case 4: If only one of either v or y is non-empty, we can look upon them as they both occurred
at the same side of -. Thus, the string s can’t be a member of L.

Case 5: If both v and y are nonempty and include the symbol -, then the third pumping lemma
condition |[vxy| < p. We have v that consists of 1’s and y that consists of 0’s. Then
uv2xy”2z contains more 1’s on the right side than the left side.

Since the string can’t be pumped using the pumping lemma conditions, the language L is not
CFL. Proven.

(b) A Turing Machine (TM) is a 6-tuple M =(Q, Y, T, 8, qo, H), where:

Gy

Turning Machine is:



(c) Consider the string 001-001

l
001-001uuL..

Head starts at leftmost variable, see pointer

. X01-001uuw..

Record symbol and overwrite it with X
Now continue to scan to the right, reject immediately if we encounter blank LI before our -

!

. X01-X0Tluuwd..

When we encounter our middle symbol -, move right one more time and see if the current
variable matches our recorded one (if it doesn’t match, reject)
Overwrite current symbol with X

l

. XX1-001uud..

We are now on our second iteration of the algo, do the same thing, now moving one cell to the
right and recording it with an X.

l

. XX1-XX1uud..

!

L XXX-XXT1uuw..

!

L XXX-XXXUuU..

!

L XXX-XXXUuU..



Continue to move, if 0 or 1 is encountered, reject. As we can see, a blank LI is encountered, so
we can ACCEPT. Thus our string is accepted by our machine and we have shown it formally
using our algorithm.



