
1. Show step-by-step how the string 00001001001 would be compressed by the

SEQUITUR algorithm.

2. Draw a PDA for the language L over {0,1} consisting of strings with twice as many 0's

as 1's (0.5pt). So 001010001 would be in this language. Next draw a DFA

recognizing 0⋆1⋆ (0.5pt). Use the algorithm from class to draw a PDA for the

intersection of these two languages (1pt).
PDA:

If the PDA reads a 0, it pushes 0 or pops 1. If it reads a 1, it pushes two 1’s or pops two 0’s or

one of each. When the stack is empty, a string that has twice as many 0’s as 1’s will be accepted.

DFA:

0*1*. q0 is a start state and a final state. q1 is a final state. q2 is a trap state.

Intersection:

Strategy: Cartesian product of the two graphs (PDA & DFA)

3. Draw a PDA for the language {𝑤𝑤𝑅∣∣w∈{0,1}⋆} (2pts).

Initially we put a special symbol ‘$’ into the empty stack. At state q2, the w is being read. In

state q3, each 0 or 1 is popped when it matches the input. If any other input is given, the PDA

will go to a dead state. When we reach that special symbol ‘$’, we go to the accepting state q4.

4. Show step-by-step how the algorithm from class for checking if a language of CFG is

infinite would operate on the grammar you got for problem (1) in this group.
Solution:

- The grammar I got for problem (1) is A->00, B->A1, S->ABBB

- First, eliminate ε-rules from G. There is no ε-rules, so move on to the next step.

- Then, eliminate unit-productions from G. There are no unit-productions, so move on to the

next step.

- Then, eliminate useless symbols from G. There are no useless symbols, so move on to the

next step.

- S is the start symbol. The left derivation of the grammar:

S->ABBB ->00A1A1A1->00001001001

- We then construct a graph where (A,B) is an edge for two variables A, B in the graph iff

A→xBy for some production in G.

- For A->00, it contains no edges because A only gives terminals. We cannot construct a

graph.

- For B->A1, we construct a graph where (B,A) is an edge for two variables B, A in the graph

iff B->xAy for some production in G, where x=null, y=1

- For S->ABBB, we construct a graph where (S,A) is an edge for two variables S, A in the

graph iff S->xAy for some production in G, where x=null, y=BBB.

We can also construct a graph where (S,B) is an edge for two variables S, B in the graph iff

S->xBy for some production in G, where x=A, y=BB; or x=AB, y=B; or x=ABB, y=null.

- So, the graph will look like:

- There is no cycle in the graph, so it can be concluded that the given grammar is not infinite.

5. (a) Prove the language {w−w∣w∈{0,1}⋆} is not CFL. Here - is a symbol in the TM's

alphabet (1pt). (b) Give the formal definition as a 6-tuple of a TM recognizing the

language {w−w∣w∈{0,1}⋆} (0.5pt). Here - is a symbol in the TM's alphabet. (c) Show

formally that your machine accepts the string 001−001 (0.5pt).
(a) Proof: L={w−w∣w∈{0,1}*} is not CFL using pumping lemma.

Suppose C was CFL. Then it has a pumping length p. Consider the string 𝑠 = 0𝑝1𝑝 − 0𝑝1𝑝

According to the theorem taught in the class, if A is a context free language, then there is a

number p (the pumping length) where, if s is any string in A of length at least p,

then s may be divided into five pieces s = uvxyz satisfying the conditions:

1. For each i ≥ 0, u𝑣𝑖x𝑦𝑖z is in C,

2. ∣vy∣ > 0, and

3. ∣vxy∣ ≤ p.

 There are 5 cases to consider:

Case 1: Neither v or y contains -. Otherwise, uv^0xy^0z does not contain -. Thus, the string s

 can’t be a part of L.

Case 2: If both v and y are nonempty and happen on the right side of -, the string s = uv^0xy^0z

is not on the right side of -. Thus, the string s can’t be a member of L.

Case 3: If both v and y are nonempty and happen on the left side of -, the string s = uv^0xy^0z

is not on the left side of -. Thus, the string s can’t be a member of L.

Case 4: If only one of either v or y is non-empty, we can look upon them as they both occurred

at the same side of -. Thus, the string s can’t be a member of L.

Case 5: If both v and y are nonempty and include the symbol -, then the third pumping lemma

condition |vxy| ≤ p. We have v that consists of 1’s and y that consists of 0’s. Then

uv^2xy^2z contains more 1’s on the right side than the left side.

Since the string can’t be pumped using the pumping lemma conditions, the language L is not

CFL. Proven.

(b) A Turing Machine (TM) is a 6-tuple M = (Q, ∑, Γ, δ, 𝑞0, H), where:

 Turning Machine is:

(c) Consider the string 001-001

1. ↓

001-001⊔⊔⊔..

Head starts at leftmost variable, see pointer

2. X01-001⊔⊔⊔..

Record symbol and overwrite it with X

Now continue to scan to the right, reject immediately if we encounter blank ⊔ before our -

 ↓

3. X01-X01⊔⊔⊔..

When we encounter our middle symbol -, move right one more time and see if the current

variable matches our recorded one (if it doesn’t match, reject)

Overwrite current symbol with X

 ↓

4. XX1-001⊔⊔⊔..

We are now on our second iteration of the algo, do the same thing, now moving one cell to the

right and recording it with an X.

 ↓

5. XX1-XX1⊔⊔⊔..

 ↓

6. XXX-XX1⊔⊔⊔..

 ↓

7. XXX-XXX⊔⊔⊔..

 ↓

8. XXX-XXX⊔⊔⊔..

Continue to move, if 0 or 1 is encountered, reject. As we can see, a blank ⊔ is encountered, so

we can ACCEPT. Thus our string is accepted by our machine and we have shown it formally

using our algorithm.

