
SJSU Students
CS 154 Section 01

1:30-2:45
04/06/11

Homework #3

1. Context free grammar for palindromes:

S --> aSa | bSb | cSc | a | b | c | ε

First of all, to enter the grammar into JFLAP, select grammar from the main

JFLAP menu. Then, add each rule into the boxes provided. The left most box

takes the left side of the productions. Next, the middle box will always take the

arrow for the production. Finally, the right box will take the right side of the

production.

After entering the grammar, click convert from the topmost menu and choose

convert to PDA. The above is picture is what is obtained after converting. In the

first transition from q0 to q1, S, the string that needs to be processed by the

automaton, and the variable Z are pushed onto the stack. The transition also says

that ε is all that is required to get from q0 to q1. Now, notice that the only

transitions on q1 are those that involve popping symbols off the stack. For

example: in state q1 a, a; ε will pop ‘a’ off the stack if ‘a’ is the next symbol that

needs to processed. The final transition between q1 and q2 can only be reached if

it is the end of the string being processed. Also, this transition says that the

transition can only be followed to q2 if the variable Z can be popped off the stack.

So, in order to reach the accept state, the stack must contain only the variable Z,

while the entirety of S must be popped off.

The next step involves adding the transitions in state q1 that push variables and

terminals onto the stack. Having rules to replace every variable in S with

terminals is necessary to get to the accept state, since every transition in q1 that

pops a variable off the stack requires a terminal input. For example: a, a; ε will

only work if there is variable ‘a’ in the input and a variable ‘a’ on the stack. To

add the necessary transitions, click on one of the production rules in the table on

the left and then click the ‘Create Selected’ button. This will add the transition for

the production in q1. As shown in the picture, for the first production S  aSa,

the transition rule generated is: ε, S; aSa. This rule tells us that on an empty string

input, pop S off the stack and push aSa onto the stack.

After repeating the process of adding production as transitions, the PDA pictured

above is generated.

2. Context free grammar:

S  P

P  <p>A</p>P | ε

A  <i>B</i>A | IA | ε

B  B | ε

I  <i></i>I | ε

Once again, the first step is to enter the grammar into JFLAP. After that, click

‘Transform Grammar’ from the Convert menu at the top. This will cause the

above image to appear.

Now, variables that derive ε must be selected. To select a variable that derives ε,

just click on the production rule, where that variable is on the left side of the

arrow.

After all the variables that derive ε have been selected, the above image appears.

Next, delete all the rules that lead to ε in the table of productions that was

generated on the right. This can be done by selecting a rule and clicking the delete

button.

Now, for every ε rule that was removed, new productions need to be added so that

the new grammar accepts the same set of strings as the original grammar. This

can be manually done, by adding on the right. The alternate method is to just

select a production rule in the left table and hitting the Complete Selected button.

In the picture above a new rule for the variable ‘I’ is added. This is because the

production I  ε was deleted. So, the original production rule, which was

I  <i></i>I | ε must become I  <i></i>I | <i></i>. This is why I  <i></i>

was added in the table on the right.

After adding all of the necessary rules, the above image is produced. Now, all ε

rules have been removed and the new grammar has been fully modified to accept

the same set of strings as the original language. Now the next step is to remove

unit rules.

After clicking the Proceed button, the above image is displayed. The graph on the

right has a node for every variable in the grammar.

Now for each unit rule add a transition arrow. So, for the unit rule S  P, add a

transition arrow from state S to state P as shown above.

After that, delete any unit production rules in the bottom right table the same way

ε rules were deleted. So, S  P is deleted from the table.

Now, just like in Epsilon removal, additional rules need to be added to the

grammar to make it equal to the original grammar. So, since S  P was deleted, a

new production with S on the left needs to be added for every production that had

P on the left. This is why there are four new rules with S on the left side added

into the new grammar.

After that, useless productions would be removed. However, since our grammar

did not contain any useless production, JFLAP proceeds straight to the Chomsky

Converter.

Now every production rule must have the form: A  BC or A  a. In these rules,

A, B, and C are variables and ‘a’ is a terminal. One way to do this is to add more

production rules manually and introduce new variables to get each production into

CNF. The other way is to select a production and hit the ‘Convert Selected’

button. After converting every production that is not in CNF, the final grammar is

obtained and the conversion to CNF is completed.

When the starting grammar for problem #2 is converted into CNF, JFLAP throws

an error saying: 26 variables available, but 73 needed. So, the grammar entered

into JFLAP needs be a little simplified to produce fewer variables in the CNF.

Context free grammar entered into JFLAP:

S  P

P  CADP | ε

A  FBGA | JIKA | ε

B  JKB | ε

I  FGI | ε

C  p

D  /p

F  i

G  /i

J  b

K  /b

Note: in this grammar, the terminals < and > were excluded, so that JFLAP would

not throw the error previously mentioned. So, those terminals are just assumed to

be around all occurrences of the terminals p, /p, b, /b, i, and /i. The CNF generated

from this grammar was used for problem #3.

3.

Once again, we start by inputting our grammar into JFLAP. This time it’s the

CNF of the grammar from problem 2.

After that, go to the input menu and choose CYK Parse to get to screen shown in

the above image.

The next step is to enter the string that will be CYK parsed. In our case, since the

grammar was modified so that JFLAP would not throw an error, the input string

that is provided in the homework problem needs to also be modified. So, the

terminals < and > need to discarded from the string.

Homework input string provided:

<p><i></i></p><p><i></i></p><p><i></i></

p>

Homework input string modified:

pbi/i/b/ppb/bi/ib/b/ppib/b/i/p

The modified version is the one we will be inputting into JFLAP.

The picture above is obtained after entering in the string and hitting the “Start”

button. JFLAP immediately gives a confirmation that the string is accepted by the

CNF grammar.

After that, click on the Step button to see which production was first applied on

the start symbol in the derivation. So, in the above picture, to derive the input

string from our start symbol S, the first production that must be used is

S  CN.

After clicking Step as many times as necessary, the entire tree is obtained.

The tree can be impossible to read if there are too many derivations, so an

alternate method of viewing the productions used is to select ‘Derivation Table’

from the drop down menu next to the Start and Step buttons.

4.

First choose Pushdown Automaton from the start menu.

Next create the states for the automaton using the state creator.

Next create the transitions using the transition creator. When inputting the

parameters for the transition arrows, the first parameter represents the input

terminal being read in. The second parameter is the symbol being popped off the

stack. The third parameter is the symbol being pushed onto the stack.

Here’s what the PDA looks like after all the transition arrows have been added in.

However, JFLAP forces transition arrows to pop 1 symbol and push 0 or 2

symbols. This restriction forced me to change the PDA to the one pictured above.

The first step after entering the PDA into JFLAP is to click on the Convert menu

and choose ‘Convert to grammar’. After that you will arrive at the screen pictured

above.

Clicking on a transition adds all possible grammar rules associated with that

transition. Because the grammar rules produced by this method were obtained

using a brute force method, not all of them are useful.

To display all of the rules, click the show all button.

After that click export to get rid of useless grammar rules and display the final

grammar.

5.
a. We know that f(n) = Ω(n2). So n2 = O(f(n)). This tells us that n2 grows as f

or slower. So, f grows as fast as n2 or faster. Therefore we know that the

string w = 0n^2 is in the language. We can rewrite w as w = (0 n) n. Now we

make w = (0 p) p so that w is both in the language and has a length greater

than p. By the pumping lemma, let w = xyz. Also, |xy| <= p, |y| > 0, and

xyiz is recognized by the language for all i >= 0. This means x = 0k and

y = 0j where k + j <= p and j > 0. Then take i = 0. This means that

xz = (0p-j)p is also in the language. However, since we know that j > 0,

p – j must be less than p. So, (p – j)p < p2. This results in (0p-j)p having

fewer 0s than (0p)p. However, we know from before that f(n) must grow as

fast as n2 or faster. So, this string does not take the form w = 0f(n). This

contradicts the pumping lemma and so the language is not regular.

b. Consider the string w = apbcapbc. This string is in the language and has a

length greater than p. By the pumping lemma, let w = xyz. Also, |xy| <= p,

|y| > 0, and xyiz is recognized by the language for all i >= 0. This means

x = ak and y = aj where k + j <= p and j > 0. Then take i = 0. This means

that xz = ap – jbcapbc is also in the language. However, now there are fewer

a’s present on the left of the string. So, a couple of a’s from the right half

of the string will need to be moved to the left half to compensate for the

smaller length. This causes the left half and right of the string to no longer

to equivalent. So, it does not take the form ww. So, the string contradicts

the pumping lemma and so the language is not regular.

c. Consider the string w = 0p#04p#08p. This string is in the language and has a

length greater than p. By the pumping lemma, let w = xyz. Also, |xy| <= p,

 |xy| <= p, |y| > 0, and xyiz is recognized by the language for all i >= 0.

This means x = 0k and y = 0j where k + j <= p and j > 0. Then take i = 0.

This means that xz = 0p - j#04p#08p is also in the language. However, since

 j > 0, we know that p – j is not equal to p. So, 4p does not equal 4(p - j)

and 8p does not equal 8(p - j). So, the xz does have form 0p#04p#08p.

Therefore, the string contradicts the pumping lemma and so the language

is not regular.

6. The limerick that will be used is:

there once was a dinosaur

who decided to give up his roar,

but when he did

he flipped his lid

and started to roar even more!

Letter Aux Production Table Hash
t t {} {}
h th {} {th}
e the {} {th, he}
r ther {} {th, he, er}
e there {} {th, he, er, re}
_ there_ {} {th, he, er, re, e_}
o there_o {} {th, he, er, re, e_, _o}
n there_on {} {th, he, er, re, e_, _o, on}
c there_once {} {th, he, er, re, e_, _o, on, nc}
e there_once {} {th, he, er, re, e_, _o, on, nc, ce}
_ therAoncA {A -> e_} {th, he, er, rA, Ao, on, nc, cA}
w therAoncAw {A -> e_} {th, he, er, rA, Ao, on, nc, cA, Aw}

a therAoncAwa {A -> e_} {th, he, er, rA, Ao, on, nc, cA, Aw, wa}
s therAoncAwas {A -> e_} {th, he, er, rA, Ao, on, nc, cA, Aw, wa, as}

_ therAoncAwas_ {A -> e_} {th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_}

a therAoncAwas_a {A -> e_} {th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a}

_ therAoncAwas_a_ {A -> e_} {th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_}

d therAoncAwas_a_d {A -> e_} {th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d}

I therAoncAwas_a_di {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di}

n therAoncAwas_a_din {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in}

o therAoncAwas_a_dino {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no}

s therAoncAwas_a_dinos {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no, os}

a therAoncAwas_a_dinosa {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no, os, sa}

u therAoncAwas_a_dinosau {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no, os, sa, au}

r therAoncAwas_a_dinosaur {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no, os, sa, au, ur}

_ therAoncAwas_a_dinosaur_ {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no, os, sa, au, ur, r_}

w therAoncAwas_a_dinosaur_w {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no, os, sa, au, ur, r_, _w}

h therAoncAwas_a_dinosaur_wh {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no, os, sa, au, ur, r_, _w, wh}

o therAoncAwas_a_dinosaur_who {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no, os, sa, au, ur, r_, _w, wh, ho}

_ therAoncAwas_a_dinosaur_who_ {A -> e_}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, a_, _d,
di, in, no, os, sa, au, ur, r_, _w, wh, ho, o_}

d therAoncAwas_aBinosaur_whoB {A -> e_, B -> _d}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB}

e therAoncAwas_aBinosaur_whoBe {A -> e_, B -> _d}
{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be}

c
therAoncAwas_aBinosaur_whoBe
c {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec}

i
therAoncAwas_aBinosaur_whoBe
ci {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci}

d
therAoncAwas_aBinosaur_whoBe
cid {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id}

e
therAoncAwas_aBinosaur_whoBe
cide {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de}

d
therAoncAwas_aBinosaur_whoBe
cided {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed}

_
therAoncAwas_aBinosaur_whoBe
cided_ {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_}

t
therAoncAwas_aBinosaur_whoBe
cided_t {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t}

o
therAoncAwas_aBinosaur_whoBe
cided_to {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to}

_
therAoncAwas_aBinosaur_whoBe
cided_to_ {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o}

g
therAoncAwas_aBinosaur_whoBe
cided_to_g {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g}

i
therAoncAwas_aBinosaur_whoBe
cided_to_gi {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g, gi}

v
therAoncAwas_aBinosaur_whoBe
cided_to_giv {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g, gi, iv}

e
therAoncAwas_aBinosaur_whoBe
cided_to_give {A -> e_, B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g, gi, iv, ve}

_
therAoncAwas_aBinosaur_whoBe
cided_to_givA

{A -> e_ marked,
B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g, gi, iv, vA}

u
therAoncAwas_aBinosaur_whoBe
cided_to_givAu

{A -> e_ marked,
B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g, gi, iv, vA, Au}

p
therAoncAwas_aBinosaur_whoBe
cided_to_givAup

{A -> e_ marked,
B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up}

_
therAoncAwas_aBinosaur_whoBe
cided_to_givAup_

{A -> e_ marked,
B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,

de, ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_}

h
therAoncAwas_aBinosaur_whoBe
cided_to_givAup_h

{A -> e_ marked,
B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h}

i
therAoncAwas_aBinosaur_whoBe
cided_to_givAup_hi

{A -> e_ marked,
B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi}

s
therAoncAwas_aBinosaur_whoBe
cided_to_givAup_his

{A -> e_ marked,
B -> _d}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, as, s_, _a, aB, Bi,
in, no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id,
de, ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, is}

_
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiC

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC}

r
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCr

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr}

o
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCro

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr,
ro}

a
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCroa

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr,
ro, oa}

r
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCroar

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr,
ro, oa, ar}

,
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCroar,

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr,
ro, oa, ar, r\, , }

_
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCroar,_

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr,
ro, oa, ar, r\, , \,_}

b
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCroar,_b

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr,
ro, oa, ar, r\, , \,_, _b}

u
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCroar,_bu

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr,
ro, oa, ar, r\, , \,_, _b, bu}

t
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCroar,_but

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr,
ro, oa, ar, r\, , \,_, _b, bu, ut}

_
therAoncAwaCaBinosaur_whoBe
cided_to_givAup_hiCroar,_but_

{A -> e_ marked,
B -> _d, C -> s_}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, r_, _w, wh, ho, oB, Be, ec, ci, id, de,
ed, d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr,
ro, oa, ar, r\, , \,_, _b, bu, ut, t_}

w therAoncAwaCaBinosaurDhoBeci {A -> e_ marked, {th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,

ded_to_givAup_hiCroar,_butD B -> _d, C -> s_,
D -> _w}

no, os, sa, au, ur, rD, Dh, ho, oB, Be, ec, ci, id, de, ed,
d_, _t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr, ro,
oa, ar, r\, , \,_, _b, bu, ut, tD}

h
therAoncAwaCaBinosaurEoBecid
ed_to_givAup_hiCroar,_butE

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, ci, id, de, ed, d_,
_t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr, ro, oa,
ar, r\, , \,_, _b, bu, ut, tE}

e
therAoncAwaCaBinosaurEoBecid
ed_to_givAup_hiCroar,_butEe

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, ci, id, de, ed, d_,
_t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr, ro, oa,
ar, r\, , \,_, _b, bu, ut, tE, Ee}

n
therAoncAwaCaBinosaurEoBecid
ed_to_givAup_hiCroar,_butEen

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, ci, id, de, ed, d_,
_t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr, ro, oa,
ar, r\, , \,_, _b, bu, ut, tE, Ee, en}

_
therAoncAwaCaBinosaurEoBecid
ed_to_givAup_hiCroar,_butEen_

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, ci, id, de, ed, d_,
_t, to, _o, _g, gi, iv, vA, Au, up, p_, _h, hi, iC, Cr, ro, oa,
ar, r\, , \,_, _b, bu, ut, tE, Ee, en, n_}

h
therAoncAwaCaBinosaurEoBecid
ed_to_givAupFiCroar,_butEenF

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, ci, id, de, ed, d_,
_t, to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar,
r\, , \,_, _b, bu, ut, tE, Ee, en, nF}

e
therAoncAwaCaBinosaurEoBecid
ed_to_givAupFiCroar,_butEenFe

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, ci, id, de, ed, d_,
_t, to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar,
r\, , \,_, _b, bu, ut, tE, Ee, en, nF, Fe}

_
therAoncAwaCaBinosaurEoBecid
ed_to_givAupFiCroar,_butEenFA

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, ci, id, de, ed, d_,
_t, to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar,
r\, , \,_, _b, bu, ut, tE, Ee, en, nF, FA}

d

therAoncAwaCaBinosaurEoBecid
ed_to_givAupFiCroar,_butEenFA
d

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, ci, id, de, ed, d_,
_t, to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar,
r\, , \,_, _b, bu, ut, tE, Ee, en, nF, FA, Ad}

i

therAoncAwaCaBinosaurEoBecid
ed_to_givAupFiCroar,_butEenFA
di

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, ci, id, de, ed, d_,
_t, to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar,
r\, , \,_, _b, bu, ut, tE, Ee, en, nF, FA, Ad, di}

d

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenFA
dG

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nF, FA, Ad, dG}

_

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenFA
dG_

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nF, FA, Ad, dG, G_}

h

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenFA
dGF

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nF, FA, Ad, dG, GF}

e

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenFA
dGFe

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nF, FA, Ad, dG, GF, Fe}

_

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenHd
GH

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id,
H -> FA}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nH, Hd, dG, GH}

f

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenHd
GHf

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id,
H -> FA}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nH, Hd, dG, GH, Hf}

l

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenHd
GHfl

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id,
H -> FA}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nH, Hd, dG, GH, Hf, fl}

i

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenHd
GHfli

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id,
H -> FA}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nH, Hd, dG, GH, Hf, fl, li}

p

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenHd
GHflip

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id,
H -> FA}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nH, Hd, dG, GH, Hf, fl, li, ip}

p

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenHd
GHflipp

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id,
H -> FA}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nH, Hd, dG, GH, Hf, fl, li, ip,
pp}

e

therAoncAwaCaBinosaurEoBecG
ed_to_givAupFiCroar,_butEenHd
GHflippe

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id,
H -> FA}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, Ge, ed, d_, _t,
to, _o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, ,
\,_, _b, bu, ut, tE, Ee, en, nH, Hd, dG, GH, Hf, fl, li, ip,
pp, pe}

d

therAoncAwaCaBinosaurEoBecG
J_to_givAupFiCroar,_butEenHdG
HflippJ

{A -> e_ marked,
B -> _d, C -> s_,
D -> _w, E -> Dh,
F -> _h, G -> id,
H -> FA, J -> ed}

{th, he, er, rA, Ao, on, nc, cA, Aw, wa, aC, Ca, aB, Bi, in,
no, os, sa, au, ur, rE, Eo, oB, Be, ec, cG, GJ, J_, _t, to,
_o, _g, gi, iv, vA, Au, up, pF, Fi, iC, Cr, ro, oa, ar, r\, , \,_,
_b, bu, ut, tE, Ee, en, nH, Hd, dG, GH, Hf, fl, li, ip, pp,
pJ}

In the table above, spaces in the sentences were replaced by ‘_’ for clarity.

The grammar outputted for this would be:

{A -> e_,

B -> _d,

C -> s_,

D -> _w,

E -> Dh,

F -> _h,

G -> id,

H -> FA,

J -> ed,

S -> therAoncAwaCaBinosaurEoBecGJ_to_givAupFiCroar,_butEenHdGHflippJ}

The final compressed string would be:

Re_R_dRs_R_wR#3hR_hRidR#5#0Red (continued on next line)

Rther#0onc#0wa#2a#1inosaur#4o#1ec#6#8_to_giv#0up#5i#2roar,_but#4en#7d#6#7flipp#8

