Functional Programming,
Scheme

CS152
Chris Pollett
Oct. 29, 2008.

Outline

 More Functional Programming

e Elements of Scheme

More Functional Programming

Last day, we began talking about functional programming.

Basically, we defined what it means mathematically to be a function;
and we distinguished between the notion of function application and
function definition.

In mathematics, variables always stand for actual values, there is no
concept of memory location, and so you can change the value of a
variable.

In a pure functional programming language, we would similarly
like that there are no variables, only constants, parameters (arguments
to functions), and values.

We build up programs by defining functions of increasing
sophistication in terms of previously defined functions.

The advantage to this approach would be that the language being close
to mathematics would have program which would be easier to verify
the correctness of.

Most actual functional programming languages are not completely
pure.

What about loops?

* How can you do looping if you have a pure
functional programming language?

for(int 1=0; 1 <10; 1++) {/*do something */}

* Seems to require variables; however, we can
replace it with recursion:

void my_for(int 1, int stop, int step) {
if (1 < stop) { /* do something */
my_for(1, stop, 1+ step)
)

¥
my_for(0, 10, 1);

More on Pure Functional
Programming

If one does not have variables and assignment, there 1s no
notion of internal state of a function: The value of a
function only depends on its arguments.

This is called referential transparency. l.e., can't use
static variables 1n our functions.

No assignment and referential transparency, imply the
runtime environment can be kept simple: we only need to
map names to values -- we don't have to worry about
location. This is sometimes called value semantics.

Another feature of pure functional languages is that
functions are first class values. That is, they can be passed
as arguments and returned as values.

Functions that take functions as arguments or return
arguments as values are called higher-order functions.

Couldn't we just use C and write
programs 1n a functional way?

e Structured values such as arrays and records
cannot be returned values from functions. -- so we
end up messing around with pointers and worrying
about bounds on things like arrays.

e It 1s hard to build a value of a structured type
directly. Functional language, like ML, provide
direct mechanisms for creating recursive data type
like binary trees, etc.

* Functions are not first class values. So it 1s hard to
write the function h = comp(f,g) a function which
take functions f and g as arguments and outputs
their composition.

Scheme

* Scheme was developed in the 1970s at MIT as a
variant of LISP for teaching purposes.

e Because the Common LISP standard was only
adopted in the 1980s, almost 20+ years after the
creation of the first LISP interpreters, and because
it was a very big language, Scheme carved out a
niche.

e Further, there was a very influential book from
MIT: Structure and Interpretation of Computer
Programs (Abelson, Abelson, Sussman) that used
it.

Syntax of Scheme

e All programs in Scheme are expressions,
expressions come in two varieties:
— atoms -- numbers, strings, names, functions, etc

— lists -- a sequence of expressions separated by spaces
and surrounded by parentheses.

* Here is a grammar for expressions:
<expression> ::= <atom> | <list>

<atom> ::= <number> | <string> | <identifier> |
<character>| <boolean>

<list> ::="(' <expression-sequence> ")’

<expression-sequence> ;= <expression> <expression-
sequence> | <expression>

Expressions and Evaluation

42 - a number

"hello" - a string

#t - a Boolean true

#\a - the character 'a'

(2.1 2.2 3.1) - a list of numbers

a - an identifier

hello - another identifier

(+ 2 3) - a list consisting of the identifier "+" and two numbers
(* (+23) (-4 3)) - alist consisting of an identifier and two lists

* To evaluate expressions we use the rules:

— Constant atoms evaluate to themselves

— Identifiers are looked up in the current environment and replaced
by the value found there

— A list 1s evaluated by first evaluating each of its elements. The first
element in the list must evaluate to a function. This function is
then applied to each of the remaining arguments.

More on Evaluation

So for example, + in (+ 2 3) evaluates to a procedure for
addition, 2 evaluates to 2, 3 evaluates to 3. The procedure
for addition 1s then applied to the rest of the list to get 5.

Evaluating all of the arguments before applying the
function at the root of the expression (in this case +) 1s
called applicative order evaluation.

Consider (2.1 2.2 2.3) . The number 2.1 1s not a function,
evaluating this list would give an error.

To prevent a list from being evaluated you can write either
(quote 2.1 2.2 2.3) or in shorthand '(2.1 2.2 2.3).

eval is the opposite operation so (eval (quote (+ 2 3))) yields 5.
Technically, in the official standard you need to write this as: (eval
(quote (+ 2 3)) (scheme-report-environment 5)) where (scheme-report-
environment 5) returns the environment binding provided by the
version S revision of the ANSI standard.

Conditionals 1n Scheme

If statements:
(if (= a0) (display "zero") (display "not zero"))
; displays echoes to current output
: semicolon 1s used for comments

cond (sorta like switch/case):
(cond ((= a 0) (display "zero"))
((>a0) (display "bigger than zero"))
((=a-1) (display "minus one"))
(else (display "less than -1")))

Notice neither 1f or cond use applicative order
evaluation. Instead, the use some kind of delayed
evaluation.

let

* Scheme has function called let which allows
values to be given temporary names within
an expression:

(let((a2) (b3)) (+ab));evaluates to 5

* The first expression within let 1s called a
binding list.

Adding things to the Scheme
Environment

e The define function can be used to add new
associlations between names and values 1n
Scheme:

(define a 2)
(define emptylist '())
(define (sum lo hi) ; could write: sum (lambda (Io hi) ...
(if (= 1o hi)
lo
(+ 1o (sum (+ lo 1) h1))))

* Once something has been define can see its value
are scheme prompt

» (sum 3 5)
12

