
Functional Programming,
Scheme

CS152
Chris Pollett

Oct. 29, 2008.

Outline

• More Functional Programming
• Elements of Scheme

More Functional Programming
• Last day, we began talking about functional programming.
• Basically, we defined what it means mathematically to be a function;

and we distinguished between the notion of function application and
function definition.

• In mathematics, variables always stand for actual values, there is no
concept of memory location, and so you can change the value of a
variable.

• In a pure functional programming language, we would similarly
like that there are no variables, only constants, parameters (arguments
to functions), and values.

• We build up programs by defining functions of increasing
sophistication in terms of previously defined functions.

• The advantage to this approach would be that the language being close
to mathematics would have program which would be easier to verify
the correctness of.

• Most actual functional programming languages are not completely
pure.

What about loops?
• How can you do looping if you have a pure

functional programming language?
for(int i=0; i <10; i++) {/*do something */}
• Seems to require variables; however, we can

replace it with recursion:
void my_for(int i, int stop, int step) {
 if (i < stop) { /* do something */
 my_for(i, stop, i+ step)
 }
}
my_for(0, 10, 1);

More on Pure Functional
Programming

• If one does not have variables and assignment, there is no
notion of internal state of a function: The value of a
function only depends on its arguments.

• This is called referential transparency. I.e., can't use
static variables in our functions.

• No assignment and referential transparency, imply the
runtime environment can be kept simple: we only need to
map names to values -- we don't have to worry about
location. This is sometimes called value semantics.

• Another feature of pure functional languages is that
functions are first class values. That is, they can be passed
as arguments and returned as values.

• Functions that take functions as arguments or return
arguments as values are called higher-order functions.

Couldn't we just use C and write
programs in a functional way?

• Structured values such as arrays and records
cannot be returned values from functions. -- so we
end up messing around with pointers and worrying
about bounds on things like arrays.

• It is hard to build a value of a structured type
directly. Functional language, like ML, provide
direct mechanisms for creating recursive data type
like binary trees, etc.

• Functions are not first class values. So it is hard to
write the function h = comp(f,g) a function which
take functions f and g as arguments and outputs
their composition.

Scheme
• Scheme was developed in the 1970s at MIT as a

variant of LISP for teaching purposes.
• Because the Common LISP standard was only

adopted in the 1980s, almost 20+ years after the
creation of the first LISP interpreters, and because
it was a very big language, Scheme carved out a
niche.

• Further, there was a very influential book from
MIT: Structure and Interpretation of Computer
Programs (Abelson, Abelson, Sussman) that used
it.

Syntax of Scheme
• All programs in Scheme are expressions,

expressions come in two varieties:
– atoms -- numbers, strings, names, functions, etc
– lists -- a sequence of expressions separated by spaces

and surrounded by parentheses.
• Here is a grammar for expressions:

<expression> ::= <atom> | <list>
<atom> ::= <number> | <string> | <identifier> |

<character>| <boolean>
<list> ::= '(' <expression-sequence> ')'
<expression-sequence> ::= <expression> <expression-

sequence> | <expression>

Expressions and Evaluation
42 - a number
"hello" - a string
#t - a Boolean true
#\a - the character 'a'
(2.1 2.2 3.1) - a list of numbers
a - an identifier
hello - another identifier
(+ 2 3) - a list consisting of the identifier "+" and two numbers
(* (+ 2 3) (-4 3)) - a list consisting of an identifier and two lists

• To evaluate expressions we use the rules:
– Constant atoms evaluate to themselves
– Identifiers are looked up in the current environment and replaced

by the value found there
– A list is evaluated by first evaluating each of its elements. The first

element in the list must evaluate to a function. This function is
then applied to each of the remaining arguments.

More on Evaluation
• So for example, + in (+ 2 3) evaluates to a procedure for

addition, 2 evaluates to 2, 3 evaluates to 3. The procedure
for addition is then applied to the rest of the list to get 5.

• Evaluating all of the arguments before applying the
function at the root of the expression (in this case +) is
called applicative order evaluation.

• Consider (2.1 2.2 2.3) . The number 2.1 is not a function,
evaluating this list would give an error.

• To prevent a list from being evaluated you can write either
(quote 2.1 2.2 2.3) or in shorthand '(2.1 2.2 2.3).

• eval is the opposite operation so (eval (quote (+ 2 3))) yields 5.
Technically, in the official standard you need to write this as: (eval
(quote (+ 2 3)) (scheme-report-environment 5)) where (scheme-report-
environment 5) returns the environment binding provided by the
version 5 revision of the ANSI standard.

Conditionals in Scheme
• If statements:

(if (= a 0) (display "zero") (display "not zero"))
; displays echoes to current output
; semicolon is used for comments

• cond (sorta like switch/case):
(cond ((= a 0) (display "zero"))
 ((> a 0) (display "bigger than zero"))
 ((= a -1) (display "minus one"))
 (else (display "less than -1")))

• Notice neither if or cond use applicative order
evaluation. Instead, the use some kind of delayed
evaluation.

let
• Scheme has function called let which allows

values to be given temporary names within
an expression:
(let ((a 2) (b 3)) (+ a b)) ; evaluates to 5

• The first expression within let is called a
binding list.

Adding things to the Scheme
Environment

• The define function can be used to add new
associations between names and values in
Scheme:
(define a 2)
(define emptylist '())
(define (sum lo hi) ; could write: sum (lambda (lo hi) …
 (if (= lo hi)
 lo
 (+ lo (sum (+ lo 1) hi))))

• Once something has been define can see its value
are scheme prompt

 (sum 3 5)
12

