
Parsing Tools.

CS152.
Chris Pollett.

Sep. 29, 2008.

Outline.

• Lex/Yacc.

Lex/Yacc.

•	 Lex is a tool for writing scanners; Yacc is a tool for writing

parsers. Both originated at Bell Labs in 1970s.
•	 Flex/Bison are their roughly equivalent GNU counterparts.

•	 Both are C pre-processors. That is, we write C code with

Lex/Yacc directives in them, run the Lex/Yacc
preprocessor and get a pure C program which can then be
compiled.

•	 The basic structure of both a Lex and a Yacc program is as

follows:

%{// C code to insert verbatim at start of program.

%}

/* Lex/Yacc Definitions */.

%%

//Lex/Yacc code
.
%%

// more C code.

A Simple Lex Example.
%{
#include <stdio.h>
int wordCount = 0;
%}
word [^ \t\n]+ /* make an abbreviation word for the expr [^ \t\n]+ */
%%
[\t\n]+ {printf("I see whitespace\n");} //what to do if see pattern
{word} {wordCount++;}
%%
int main()
{

yylex(); //call the lexer. Gets input from command line until ^D .
printf("word count: %d", wordCount); return 0;

}
•	 To compile:

lex lextest.l -o lextest.c #default output is lex.yy.c .
gcc lextest.c -o lextest -ll #-ll not needed if use flex.

A Yacc Example.
%{

#include <stdio.h>

%}

%token ARTICLE NORMAL_NOUN PROPER_NOUN.

%%

noun_phrase : PROPER_NOUN { printf(“Proper Noun\n”); }

| ARTICLE NORMAL_NOUN {printf(“Usual Noun\n”); }
%%
int main(int argc, char **argv)
{

extern FILE *yyin;
yyin = fopen(argv[1], "r"); //sets up lexer to use this file as input

yyparse();
fclose(yyin);

}

More on Yacc Example.

•	 To compile the above you could use the line:
yacc -d yacctest.y.

•	 This will produce two files: y.tab.c and y.tab.h. If
you use bison you’d get yacctest.tab.c and
yacctest.tab.h .

•	 The .h file contains #defines for the tokens
ARTICLE, NORMAL_NOUN, etc.

•	 You would then need to write a lex program
which includes y.tab.h.

•	 It might have a rule like:
A|a|The|the {return ARTICLE;} .

Still More on Yacc Example.
•	 Once you have run yacc and lex on the

above grammar and its corresponding
scanner. To compile the whole thing you
would type:
gcc -o yacctest y.tab.c lex.yy.c -ly -ll .

Yacc $ variables.

•	 Yacc refers to parts of a rule using variables

which begin with a dollar sign:
expression : expression ‘+’ expression {$$ = $1 + $3;}

| expression ‘-’ expression {$$ = $1 - $3;}
| NUMBER {$$ =$1;}.
;

•	 $$ refers to the left hand side of the rule value. $n
refers to the nth item on the right hand side.

Typing Tokens.

• Lex uses a few built-in global variables

when it scans its input: yytext, yylval.

•	 The first is a char pointer to the string
matching the current token. The second is
used to store the value of the $ variable for
the given token returned.

•	 yylval has type YYSTYPE which is a union
that you can set up in your grammar.

More on Typed Tokens.

• To set up YYSTYPE in your grammar (will

appear in y.tab.h file after yacc’ing):
%{
//stuff
%}
%union {

double dval; // in this case we have two possibilities

int ival; // could have more. In real world possibilities

// would include a struct for a syntax tree.
}
%token <ival> INTEGER .
%token <dval> DOUBLE.
%type <dval> expression /*notice can say type of

nonterminal */ .

Typed Tokens and the Lexer.

•	 The lexer may then have rules like:

[0-9]+ {yylval.ival = atoi(yytext); return

INTEGER;}.

•	 So if you had a rule in your grammar like:
integer_expr : INTEGER {$$ = (double)$1;}
//$1 would have been an int .

•	 Typically, you use the typing mechanism so that
you can build up a syntax tree for the input as you
are parsing it.

Error Handling in Your Grammar.

•	 If you Yacc encounter an error while parsing it
will call the function yyerror to handle.

•	 If you like, you can rewrite this function to do
whatever you want:
int yyerror(char *s).
{

fprintf(stderr, “You caused the error: %s , bozo.\n”, s);
return 1;

}

