
More OO, Start of Functional
Programming

CS152
Chris Pollett

Oct. 27, 2008.

Outline

• Objective-C
• Functional Programming

Introduction

• Last day, we talked about two different ways that
you could try to add object orientation to C:
– Structs with functions pointers, bindings, and syntactic

sugar
– Functions with static members acting as fields, using a

message parameter to the function to say what method
to invoke. The static members are arrays, one for each
field of the class, and an object_id is used to say which
object among all instances of the class we are talking
about.

• C++ takes the first approach. The second approach
is more akin to Objective-C.

Objective-C

• Objective-C was created by Cox and Love
in the mid-1980s.

• It was popularized by NextStep Corp, which
was later bought by Apple.

• Objective-C is used to program Mac's,
iPhones, etc. There is also a GNU version.

• It is an extension of C. So C programs are
Objective-C programs.

Basic of an Objective-C Program
• Header Files use the extension .h
• Implementations use the extension .m
• A .h file typically might be used to define an

interface of a class. This might have the format:
@interface classname : superclassname {
 int my_field;
 // instance variables can be any C type or the generic id type.
}
+classMethod1; // + means class method; - means instance method
+(return_type)classMethod2;
+(return_type)classMethod3:(param1_type)parameter_varName;
-(return_type)instanceMethod1:(param1_type)param1_varName

:(param2_type)param2_varName;
-(return_type)instanceMethod2WithParameter: (param1_type)param1_varName

andOtherParameter:(param2_type)param2_varName;
@end

Implementation Files

• To implement the functions you use an
implementation file and the syntax:

@implementation classname
+classMethod {
 // implementation
}
-instanceMethod {
 // implementation
}
@end

Invoking Methods
• A call obj.method(parameter); in C++ might look

like [obj method:parameter]; in Objective-C.
• You can have multiple parameters:

[obj method:parameter1 paramName2: parameter2]
• To instantiate a class you can send either the new

message or instantiate in two steps:
 MyObject * o = [MyObject new];
 MyObject * o = [[MyObject alloc] init];
• You can override the init method of your class to

make a new constructor.

Example Objective-C Program
// Interface File
#import <objc/Object.h>

@interface MyHello : Object {
 int myNumber;
}
-setNumber:(int)aNumber;
-sayHello;

@end

Example Program cont'd
// implementation file
#import <stdio.h>
#import "MyHello.h"
@implementation MyHello
-setNumber:(int)aNumber { myNumber =
aNumber;

}
-sayHello{
 printf("Hello! %d\n", myNumber);
}
-(id) init { //self is like this in Java
 self = [super init];
 if (self) { myNumber = 0; }
 return self;}
@end

Objective-C Example
Last Part.

#import "MyHello.h"
int
main(void){
MyHello *hello = [MyHello new];
[hello setNumber:10];
 //set the number to echo
[hello sayHello];
return 0;
}
/* To compile in gcc could type:
gcc -x objective-c -Wno-import main.m MyHello.m

-lobjc */

Will do iPhone Demo.

Functional Programming
• We are now going to talk about functional

programming languages.
• These programming languages view programs as

functions.
• Given two sets X,Y a function f associates to each

value in X a value in Y.
• This might be written f: X --> Y
• The mapping of a particular value might be

written y = f(x).
• In order to make a language out of the notion of

function. We need (1) to be able to start with a
base set of functions and define new ones; (2) we
need to be able to apply functions to values.

