

Program Abstractions, Language

Paradigms.

CS152.

Chris Pollett.

Aug. 27, 2008.

Outline.

•	 Abstractions for telling a computer how to
do things.

•	 Computational Paradigms.
•	 Language Definition, Translation.

Recall.
• Last day, we said: “ A programming language is a

notational system for describing computation in a

machine readable and in a human readable form.”

•	 We explored what we meant by computation and
what we meant by machine readable.

•	 Today, we begin by looking at some of the more
common abstraction used by humans to tell
machines what to do.

Abstractions for Programming

Languages.

•	 The ways we describe what we’d like a machine
to do can be characterized in a couple different
ways:
– Data abstractions versus control abstraction: the

former is how we describe the data such as strings,
numbers, etc we want the computer to manipulate, the
later is how we describe the sequence of operation the
machine should take, like loops, if-statements etc.

– Levels of abstraction such as Basic, Structured, or
Unit Abstraction: these go from local machine
information, to more global structure of the program, to
entire components of the program.

• Let’s look at some example of Data abstractions

and control abstractions at each of these levels.

Data Abstractions.

•	 Basic Abstraction Examples:

–	 Rather than refer to how an integer is actually stored as bits in memory we
might have a data type which acts as an integer and hides these details.
For example, int x; in Java, C, etc.

–	 Rather than have to refer to memory location to talk about a particular
integer, we instead have variables.

•	 Structured Abstraction Examples:
–	 A data structure is a tool for collecting related datatypes together. The

most common example of such a structure is the notion of array that many
languages support. Such an array might be declared with a line like: int
a[10]; //in Java or C or INTEGER a(10) in Fortran.

–	 You might also have type declarations like.

typedef int Intarray[10];

•	 Unit Abstractions Examples:
–	 Here we might want to collect all the code related to a data structure in

one place. For instance, we might want to data encapsulate the code for a
List in a class, and we might want to hides it internals from users of this
code (information hiding).

Control Abstractions.
•	 Basic Abstraction Examples:

–	 Typically a basic control abstraction combines a few machine code
operations into one statement. For example, variable assignments such as:
x =x +3;

–	 Another example, might be the GOTO assignment which abstracts the
jump operations of the machine code. Ex: goto label; label: //do
something.

•	 Structure Abstraction Examples:
–	 Break the code into groups of instructions together with tests that govern

their execution. For example, if-statements, or case-statements (generally
called selection statements).

–	 While, for, do, repeat.
–	 Function calls.
–	 These structure abstraction can often be nested such as have nested if’s or

a while outside an if, etc.
•	 Unit Abstraction:

–	 A stand-alone unit such a C library which collects together related
procedures.

–	 Threads, processes, tasks.

Computational Paradigms.

•	 Sometimes the architecture of having a single processor

executing instruction one at a time from memory using
only a fixed number of other memory locations is called
the von Neumann Architecture.

•	 Many common programming languages today such as C,
abstract away the low-level messiness but otherwise map
directly to this architecture. That is, one has a list of
commands one executes in sequence. These languages are
generally called imperative languages. The term
procedural is also used.

•	 This is not the only framework (paradigm) for doing
things. In some situation, such as in retrieving data from
databases, parallel programming, etc other paradigms
provide a more natural fit.

•	 We will now look at a few of these…

Object-Oriented Programming.

•	 This paradigm is based on the notion of
object.

•	 An object collects together a collections
related properties, data structure, and the
functions used to manipulate them.

Functional Programming.

•	 A functional programming language is based on the notion
of function and applications of functions to known values.
(Sometimes also called an applicative language).

•	 Scheme is an example of such a language. The definition
of the gcd function in scheme might look like:
(define (gcd u v) (if (= v 0) u (gcd v modulo(u v)))).

We could then execute this with (gcd 6 3)
.

Logic Programming.

•	 Logic programming is based on using symbolic
logic to declare what things are known. (hence,
also called declarative programming).

•	 And then using unification and resolution to figure
out wha the person wants.

•	 For example, gcd might be defined as:
gcd(U, V, U) :- V = 0.
gcd(U,V, X) :- not (V =0), Y is U mod V, gcd (V,Y,X).

Language Definition.

•	 There are several different ways one can define a programming

language. One way is to write a compiler and say that the language is
specified by how the compiler outputs your code. This is called
creating a reference implementation. Some languages like PHP, Perl
only do this.

•	 Another way to create a standard specification for the language is some
English (or other human language) reference manual. To do this one
needs to specify two things:
–	 Language Syntax: this describes what strings constitute programs in the

given languages. A spec for the syntax might be to give a context free
grammar. Such a grammar might have rules like:

<if-statement> ::== if(<expression>) <statement> [else <statement>].
String like “if’ and ‘else’ in the above are called tokens. Their description form

the lexical structure of the language.
–	 Language Semantics: a specification of this must describe how a given

syntactic structure should be implemented on the computer. This can be
English, or using one of a few common formal semantics such as:
operational semantics, denotational semantics, or axiomatic
semantics.

Language Translation.

•	 To be useful a programming language needs to
have a translator.

•	 This is a program which either translates instances
of the language into machine code, which can then
be executes (compiler); or which takes instances
of the languages and executes them as it read them
(interpreter).

