Procedures

CS152
Chris Pollett
Nov. 26, 2008.

Outline

e Procedure and Functions
e Activations

 Parameter Passing

Introduction

Last day, we talked about basic control in
programming languages.
We looked at an distinguished between

expressions and statements; and looked at
different kinds of each.

Today, we are going to look at the next level of
structured control abstractions.

We are going to look at procedures or functions.

We are going to look at activation records which
are the collections of data needed to maintain a
single execution of a procedure at run-time

Procedures and Functions

A procedure is a mechanism in a programming language for
abstracting a group of actions.

This group of actions is called the body of the procedure.

In addition to the body, a procedure has a specification or interface.
This lists its name, and the name and type of its parameters, and the
return type if any.

A procedure is called or activated by stating its name together with
arguments to the call.

A call to a procedure transfers control to the beginning of the body of
the called procedure (the callee).

When execution reaches the end of the callee, control 1s returned to the
caller.

Sometimes a distinction is made between procedures, which carry out
their operations by changing their parameters or nonlocal variables;
and functions, which can appear in expressions and compute returned
values.

Procedure Semantics

A procedure 1s a block whose declaration is separated from
its execution.

So a labeled C block would not count as a procedure. A:{
int ¢,d;/*code*/ B:{ int d; /*morecode*/}}

When we were talking about basic semantics, we said that
the environment determines the allocation of memory and
maintains the meanings of names during execution.

In a block-structured language, when a block 1s
encountered during execution, it causes the allocation of
local variables and other objects corresponding to the
declarations of the block.

This allocated memory is called the activation record of
the block and the block 1s said to be activated.

Example

e (Consider:
A:{ int c,d;/*code*/ B:{ int e; /*morecode*/} }
» Before B begins to execute the activations in the environment might look like:

C L.
Activation of A
d
* When B begins to execute the environment would look like:
¢ Activation of A
d
e Activation of B

* After B finishes the environment would go back to the first situation.

Environments

It is conpletely possible to refer to global variables in C within a
block...

This would be called a nonlocal reference.

So in addition to the picture of the last slide on could imagine a global
environment whose data is before each of the local activations.
If we have functions like:

int d=10;

void A() {/*code*/ B();}

void B() {/*more code uses d*/}

We see d is part of the environment in which B must run. This
environment is called the defining environment of B.

On the other hand the environment in A (also has access to d) in which
B was called is referred to the calling environment.

We want our runtime system to be able to keep track of these two
different environments so that we can give procedures the semantics
we have described a couple of slides back.

Parameters and Arguments

There are two methods of communicating between
calling blocks and defining blocks of a procedure:
we can either use nonlocal references or we can
use parameters.

We have previously distinguished between
parameters (slots to feed data into in a procedure)
and arguments (the actual data fed into those
slots).

Sometimes parameters are called formal
parameters and arguments are called actual
parameters.

Procedures which depend only on paramters and
fixed language features are said to be in closed
form.

Parameter Passing Mechanisms

* We now look at different ways data can be fed
into parameters.

— Pass by Value - replace all the parameters in the body
of the procedure by the corresponding argument value

— Pass By Reference - pass the location of the argument

— Pass By Value Result - do pass by value, then take the
final result of the procedure and copy it back to the
location of the passed argument.

— Pass By Name and Delayed Evaluation -- this 1s what
we talked about in ML using the delay mechanism.

