
Procedures

CS152
Chris Pollett

Nov. 26, 2008.



Outline

• Procedure and Functions
• Activations
• Parameter Passing



Introduction
• Last day, we talked about basic control in

programming languages.
• We looked at an distinguished between

expressions and statements; and looked at
different kinds of each.

• Today, we are going to look at the next level of
structured control abstractions.

• We are going to look at procedures or functions.
• We are going to look at activation records which

are the collections of data needed to maintain a
single execution of a procedure at run-time



Procedures and Functions
• A procedure is a mechanism in a programming language for

abstracting a group of actions.
• This group of actions is called the body of the procedure.
• In addition to the body, a procedure has a specification or interface.

This lists its name, and the name and type of its parameters, and the
return type if any.

• A procedure is called or activated by stating its name together with
arguments to the call.

• A call to a procedure transfers control to the beginning of the body of
the called procedure (the callee).

• When execution reaches the end of the callee, control is returned to the
caller.

• Sometimes a distinction is made between procedures, which carry out
their operations by changing their parameters or nonlocal variables;
and functions, which can appear in expressions and compute returned
values.



Procedure Semantics
• A procedure is a block whose declaration is separated from

its execution.
• So a labeled C block would not count as a procedure. A:{

int c,d;/*code*/ B:{ int d; /*morecode*/}}
• When we were talking about basic semantics, we said that

the environment determines the allocation of memory and
maintains the meanings of names during execution.

• In a block-structured language, when a block is
encountered during execution, it causes the allocation of
local variables and other objects corresponding to the
declarations of the block.

• This allocated memory is called the activation record of
the block and the block is said to be activated.



Example
• Consider:

A:{ int c,d;/*code*/ B:{ int e; /*morecode*/}}
• Before B begins to execute the activations in the environment might look like:

• When B begins to execute the environment would look like:

• After B finishes the environment would go back to the first situation.

c

d

c

d

e

Activation of A

Activation of A

Activation of B



Environments
• It is conpletely possible to refer to global variables in C within a

block…
• This would be called a nonlocal reference.
• So in addition to the picture of the last slide on could imagine a global

environment whose data is before each of the local activations.
• If we have functions like:

int d=10;
void A() {/*code*/ B();}
void B() {/*more code uses d*/}

• We see d is part of the environment in which B must run. This
environment is called the defining environment of B.

• On the other hand the environment in A (also has access to d) in which
B was called is referred to the calling environment.

• We want our runtime system to be able to keep track of these two
different environments so that we can give procedures the semantics
we have described a couple of slides back.



Parameters and Arguments
• There are two methods of communicating between

calling blocks and defining blocks of a procedure:
we can either use nonlocal references or we can
use parameters.

• We have previously distinguished between
parameters (slots to feed data into in a procedure)
and arguments (the actual data fed into those
slots).

• Sometimes parameters are called formal
parameters and arguments are called actual
parameters.

• Procedures which depend only on paramters and
fixed language features are said to be in closed
form.



Parameter Passing Mechanisms

• We now look at different ways data can be fed
into parameters.
– Pass by Value - replace all the parameters in the body

of the procedure by the corresponding argument value
– Pass By Reference - pass the location of the argument
– Pass By Value Result - do pass by value, then take the

final result of the procedure and copy it back to the
location of the passed argument.

– Pass By Name and Delayed Evaluation -- this is what
we talked about in ML using the delay mechanism.


