Control Structures

CS152
Chris Pollett
Nov. 24, 2008.



Outline

More on Polymorphism
Structures/ Signatures

Control Structures

As we talk about the above we'll continue to
introduce ML..



More on Polymorphism

We were talking about types, polymorphism and type inference.

There are several kinds of polymorphism: for instance, function
overloading is a kind of polymorphism (ad hoc); overriding methods
in subclasses of classes is called pure or subtype polymorphism.

ML's type inference scheme, where we define a function's type
parameters implicitly, and then can use the function on any subtype of
this type is called implicit parametric polymorphism.

In contrast, things like C++ templates would be examples
of explicit parametric polymorphism.

In ML, example of explicit parametric polymorphism
might be where we write a recursive data type like:
datatype 'a Stack = EmptyStack | Stack of 'a*('a Stack);

Here 'a 1s explicitly given as being of any type; we could
then create value of types like int Stack. Ex: Stack(1,
EmptyStack)



ML Modules

ML provides a notion of unit data abstraction called a
module. This 1s similar to a C++ namespace or Java
Package.

structure SomeName = struct
val bob =50;
(* more values *)
fun curry a b = (a, b);
(* more functions *)
end;
* To use things in SomeName, I can either do things like:
SomeName.bob (* or *)

open SomeName;
bob:;



Signatures

Notice when we define/open a structure ML gives us its
type back.

ML also has a mechanism for creating types of modules
called signatures:
signature SomeType = sig
val bob:int;
val curry : int -> int -> int * int
(* last thing does not end with a ; *)
end;
Notice, curry on the last slide was type 'a ->'b ->"a * 'b;
but above 1s int -> int -> 1nt * int.

We can use SomeType to create narrowed instances of our
previous structure, again illustrating parametric
polymorphism:

structure SomeOtherName: SomeType = SomeName;



Some Useful ML Modules

e There are several useful modules which come with
ML.:

— Int, Bool, Char, String each have the corresponding
conversion functions for the given type

— Math - has abs, sin, cos, tan, etc

— Substring: has substring, splitl, splitr, triml, trimr,
token, etc

— TextIO - openln, openOut, print, etc.
e Some function in the global environment are

bound to things in these modules for example int
actually binds to Int.int

e To find out more about these modules:
http://www.standardml.org/Basis/overview.html




Control Structures

Recall at the beginning of the semester we distinguished
between two main kinds of abstractions connected with
programming languages: data abstraction and control
abstraction.

We divided each of these into three levels: basic, structure
and unit abstraction.

We have now discussed in detail each of these levels for
data abstractions, and gave examples of each in the ML
language: primitive and enumerated type; type constructors
and recursive type; and structures and signatures.

We now begin our study of control abstractions looking at
each of these levels in turn.



Basic Control Structures

* We first set up some terminology, which is often
abused when people talk about particular
languages:

— A (pure) expression is a piece of code which executes

some computation, returns a value, and has no side-
effect (doesn't alter program memory).

— A statement is a piece of code which 1s executed for
its side-effect and which returns no value.
 We will now look at some of the control question
which arise when we evaluate expressions and
statements.



Expressions

Depending on the language expressions can be written using infix (C,
ML), prefix (Scheme), postfix (RPN calculators) notations. So (3 +
4)*5, might look like * + 34 5,0or34 + 5 *,

+ and * are called operators, the inputs they take are called
parameters/operands, the particular values of those parameters in a
given use of these operators are called arguments.

There are several ways one could evaluate the arguments to
expressions.

We have seen applicative evaluation: compute the values of all
subexpressions, then apply the root operator.

For boolean expressions, one also has things like short-circuit
evaluation: keep evaluating subexpression left to right until the value
1s determine then stop. Ex: 3 =4 orelse 2= 0 orelse 1=1 orelse 1 = 0;
(*would not bother to evaluate the last 1 =0 *)

We have also seen that if-expressions and case-expressions don't
evaluate all their arguments. These are examples of delayed
evaluation.



Normal Order Evaluation

In this kind of evaluation, evaluation begins before its operands are
evaluated, and each operand is evaluated only as needed.

This is sometimes called lazy-evaluation.

In a language with applicative order evaluation, one way to achieve
normal order evaluation is to define for each argument to create a new
argument which is its delay'd version.

So for example, consider the function:
fun countOb=blcountab=count(a-1)(b+ 1);
(count 1000000000 0) is slow enough you can notice it compute.

Notice though: val b = fn () => count 100000000 0; computes
instantaneously as the expression count 100000000 O isn't being

evaluated, b 1s just a function which if applied would compute count
100000000 0. We call b here 1s the delay of count 100000000 O;

Once we have replaced each argument with its delayed, we rewrite our
function to operate on delay'd argument.

To evaluate a delayed argument (force it) we apply it on an empty
argument list: For b, we do b();

Now to do normal order evaluation, we take our rewritten function and
make sure to only force argument as we need them.



Statements

We have already seen several kinds of statements: if statements, case
statements.

There are also structured statements like: for, while, do-while loops.
In ML, while loops can be done using the syntax like:

vali=ref 1;

while !1 <= 10 do (print (Int.toString(!1)); print (" "); 1:= i +1);
You sometimes see the control of these statement written abstractly as:
if B1 -> S1 ... Bn ->Sn. Here Bi is called a guard on the statement
Si.
do-while can be viewed as just syntactic sugar on the basic while loop.

Many languages restrict the way the control variables of a for loop
work. For instance, 1 cannot be changed in the body of the loop, 1 1s
undefined after the loop terminates, 1 must be an int, etc.



