
Control Structures

CS152
Chris Pollett

Nov. 24, 2008.

Outline

• More on Polymorphism
• Structures/ Signatures
• Control Structures

• As we talk about the above we'll continue to
introduce ML.

More on Polymorphism
• We were talking about types, polymorphism and type inference.
• There are several kinds of polymorphism: for instance, function

overloading is a kind of polymorphism (ad hoc); overriding methods
in subclasses of classes is called pure or subtype polymorphism.

• ML's type inference scheme, where we define a function's type
parameters implicitly, and then can use the function on any subtype of
this type is called implicit parametric polymorphism.

• In contrast, things like C++ templates would be examples
of explicit parametric polymorphism.

• In ML, example of explicit parametric polymorphism
might be where we write a recursive data type like:
datatype 'a Stack = EmptyStack | Stack of 'a*('a Stack);

• Here 'a is explicitly given as being of any type; we could
then create value of types like int Stack. Ex: Stack(1,
EmptyStack)

ML Modules
• ML provides a notion of unit data abstraction called a

module. This is similar to a C++ namespace or Java
Package.

structure SomeName = struct
 val bob =50;
 (* more values *)
 fun curry a b = (a, b);
 (* more functions *)
end;
• To use things in SomeName, I can either do things like:

SomeName.bob (* or *)
open SomeName;
bob;

Signatures
• Notice when we define/open a structure ML gives us its

type back.
• ML also has a mechanism for creating types of modules

called signatures:
signature SomeType = sig
 val bob:int;
 val curry : int -> int -> int * int
 (* last thing does not end with a ; *)
end;

• Notice, curry on the last slide was type 'a -> 'b -> 'a * 'b;
but above is int -> int -> int * int.

• We can use SomeType to create narrowed instances of our
previous structure, again illustrating parametric
polymorphism:
structure SomeOtherName: SomeType = SomeName;

Some Useful ML Modules
• There are several useful modules which come with

ML:
– Int, Bool, Char, String each have the corresponding

conversion functions for the given type
– Math - has abs, sin, cos, tan, etc
– Substring: has substring, splitl, splitr, triml, trimr,

token, etc
– TextIO - openIn, openOut, print, etc.

• Some function in the global environment are
bound to things in these modules for example int
actually binds to Int.int

• To find out more about these modules:
http://www.standardml.org/Basis/overview.html

Control Structures
• Recall at the beginning of the semester we distinguished

between two main kinds of abstractions connected with
programming languages: data abstraction and control
abstraction.

• We divided each of these into three levels: basic, structure
and unit abstraction.

• We have now discussed in detail each of these levels for
data abstractions, and gave examples of each in the ML
language: primitive and enumerated type; type constructors
and recursive type; and structures and signatures.

• We now begin our study of control abstractions looking at
each of these levels in turn.

Basic Control Structures
• We first set up some terminology, which is often

abused when people talk about particular
languages:
– A (pure) expression is a piece of code which executes

some computation, returns a value, and has no side-
effect (doesn't alter program memory).

– A statement is a piece of code which is executed for
its side-effect and which returns no value.

• We will now look at some of the control question
which arise when we evaluate expressions and
statements.

Expressions
• Depending on the language expressions can be written using infix (C,

ML), prefix (Scheme), postfix (RPN calculators) notations. So (3 +
4)*5, might look like * + 3 4 5, or 3 4 + 5 *.

• + and * are called operators, the inputs they take are called
parameters/operands, the particular values of those parameters in a
given use of these operators are called arguments.

• There are several ways one could evaluate the arguments to
expressions.

• We have seen applicative evaluation: compute the values of all
subexpressions, then apply the root operator.

• For boolean expressions, one also has things like short-circuit
evaluation: keep evaluating subexpression left to right until the value
is determine then stop. Ex: 3 = 4 orelse 2= 0 orelse 1=1 orelse 1 = 0;
(*would not bother to evaluate the last 1 = 0 *)

• We have also seen that if-expressions and case-expressions don't
evaluate all their arguments. These are examples of delayed
evaluation.

Normal Order Evaluation
• In this kind of evaluation, evaluation begins before its operands are

evaluated, and each operand is evaluated only as needed.
• This is sometimes called lazy-evaluation.
• In a language with applicative order evaluation, one way to achieve

normal order evaluation is to define for each argument to create a new
argument which is its delay'd version.

• So for example, consider the function:
fun count 0 b = b | count a b = count (a - 1) (b + 1);

• (count 1000000000 0) is slow enough you can notice it compute.
• Notice though: val b = fn () => count 100000000 0; computes

instantaneously as the expression count 100000000 0 isn't being
evaluated, b is just a function which if applied would compute count
100000000 0. We call b here is the delay of count 100000000 0;

• Once we have replaced each argument with its delayed, we rewrite our
function to operate on delay'd argument.

• To evaluate a delayed argument (force it) we apply it on an empty
argument list: For b, we do b();

• Now to do normal order evaluation, we take our rewritten function and
make sure to only force argument as we need them.

Statements
• We have already seen several kinds of statements: if statements, case

statements.
• There are also structured statements like: for, while, do-while loops.
• In ML, while loops can be done using the syntax like:

val i = ref 1;
while !i <= 10 do (print (Int.toString(!i)); print (" "); i := !i +1);

• You sometimes see the control of these statement written abstractly as:
if B1 -> S1 | …| Bn ->Sn. Here Bi is called a guard on the statement
Si.

• do-while can be viewed as just syntactic sugar on the basic while loop.
• Many languages restrict the way the control variables of a for loop

work. For instance, i cannot be changed in the body of the loop, i is
undefined after the loop terminates, i must be an int, etc.

