

Parsing Techniques.

CS152.

Chris Pollett.

Sep. 24, 2008.

Outline.

• Top-down versus Bottom-up Parsing.

• Recursive Descent Parsing.
• Left Recursion Removal.
• Left Factoring.
• Predictive Parsing.

Introduction.

•	 We want to describe now how to write
parsers for a grammar written in EBNF.

•	 At its most basic a parser needs to be able to
recognizes programs in the programming
language specified by the grammar.

•	 Most likely also want to be able to build a
abstract syntax tree and attach some
semantics to the program.

Top-down versus Bottom-up

Parsing.

•	 There are two approaches to parsing:
– Bottom-up: Here we start from the program and try to

match initial segments to left hand sides of rules. When
we get a match, the right hand-side of a rule is replaced
(reduced) with its left hand side on the stack. These
parsers are sometimes called shift/reduce parsers,
because one often shifts token onto the stack prior to
deciding to do a reduction.

– Top-down: One starts at the start symbol for the
grammar, and replaces non-terminals with the right-
hand-side of rules until one gets down to terminals
which match the input. (Mentioned last-day.)

•	 Both methods can be automated. Yacc/Bison is a
shift/reduce parser.

Recursive Descent Parsing.

•	 One common way to write a top-down parser by

hand is to rely on the run-time stack of the
language you are writing the compiler in.

•	 That is, for each non-terminal you write a
procedure. This procedure is supposed to be able
to do parsing for that non-terminal. If that non-
terminal is the right hand-side of a rule, the
procedure will try to match any tokens in the rule
to the input, and recursively call procedures for
non-terminals on the right hand side of the rule.

Example.
•	 Consider:

sentence -> nounPhrase verbPhrase .
nounPhrase -> article noun.
article -> a | the .

• This might yield procedures such as:
void sentence (void) {nounPhrase();verbPhrase;}
void nounPhrase(void) {article(); noun();}
void article(void) {if (token==“a”) match(“a”);

else if (token == “the”) match(“the”);

else error(); }

•	 We imagine token is a global variable provided by the
scanner/lexer.

What if a non-terminal has

multiple things it goes to?

•	 We mentioned last day that one problem with ambiguous
grammars was that we can’t figure out what to put on the
stack when doing top-down parsing. Isn’t this the same
problem?

•	 No. As long as the grammar is not ambiguous, we can take
an approach like for article above. Consider S->AB | CD.
We could write:
void S() { A(); B(); if(parseError()) {rewind(); C(); D();

}}.
•	 rewind() returns the string to where we started

parsing S. This is called backtracking.
•	 Ideally, we want to design our grammars so we

don’t need to do backtracking.

Left Recursion Removal.

•	 Another issue with recursive descent is that it will

tend to go into an infinite loop if you have a left-
recursive rule. For example, a rule like expr ->
expr + term | term where left hand side
nonterminal is also the leftmost nonterminal on
the right-hand side of the rule.

•	 This can be fixed by changing the above to expr -
> term + expr | term , but note this makes + into a
right associative operator.

•	 Code would look like:
void expr(void) {term(); if(token == “+”){match(“+”);

expr();}}

Fixing Associativity.

•	 Notice if we write the above in EBNF it

becomes expr -> term {+ term}, a term
followed by 0 or more + term’s. So we see
this could be handled by using a loop rather
than recursion in our procedure:
void expr() {term(); while(token ==

“+”){match(“+”); term();}}
Just after the second call to term we can handle

the associativity as we desire.

Left Factoring.

•	 A right recursive rule like:

<expr> -> <term> @ <expr> | <term> .
Can also be rewritten in EBNF as:
<expr> -> <term> [@ <expr>].

•	 This is called left factoring.
•	 Consider:

<if-statement> -> if(<expr>) <statement> |

if(<expr>) <statement> else <statement>
 .

•	 This cannot be directly translated into code as both rules
begin with the same prefix, but we can “factor out” the
prefix:
<if-statement> -> if(<expr>) <statement> [else <statement>] .

•	 This can be code viewing the [] as an if clause:
void ifStatement() {match(“if”); match(“(”); expression(); match(“)”);

statement(); if(token==“else”){match(“else”); statement();}}

Predictive Parsing.

•	 As we mentioned above, we would like to avoid

backtracking.
•	 This means we need a way to predict which rule to

select for a given nonterminal.
•	 For grammars which meet two conditions we now

describe this can be done.
•	 The idea is that the parser will do a single-symbol

lookahead ahead and use that to determine which
rule to use.

More on Predictive Parsing.

•	 Consider a rule of the form A -> α1| α2| α3|…| αn.
•	 The first condition is that the first symbols of each

of the rules must be distinct.
•	 For example, for the grammar:

<factor> ::= (<expr>)|<number> .
<number> ::= <digit> {<digit>} .
<digit> ::= 0|1|2|3|4|5|6|7|8|9 .

•	 We need First((<expr>)) and First(<number>) to
be disjoint.

•	 First((<expr>)) = {(} and First (<number>) =
First(<digit>) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} so the
condition holds.

Second Criteria for Predictive

Parsing.

•	 If we have rule of the form A->α[β]γ (I.e., we
have an optional β), then the set of first tokens β
can go to must be distinct from the set of tokens
that could immediately follow β.

•	 For example
A -> B [C] D.
C-> aE | bF.
D-> cG.
Then First(C) = {a, b} and Follow(C) ={c}. So the

criteria would hold.

