Parsing Techniques

CS152
Chris Pollett
Sep. 24, 2008.

Outline

Top-down versus Bottom-up Parsing
Recursive Descent Parsing

Left Recursion Removal

Left Factoring

Predictive Parsing

Introduction

* We want to describe now how to write
parsers for a grammar written in EBNF.

e At its most basic a parser needs to be able to
recognizes programs in the programming
language specified by the grammar.

* Most likely also want to be able to build a
abstract syntax tree and attach some
semantics to the program.

Top-down versus Bottom-up
Parsing

e There are two approaches to parsing:

— Bottom-up: Here we start from the program and try to
match initial segments to left hand sides of rules. When
we get a match, the right hand-side of a rule 1s replaced
(reduced) with its left hand side on the stack. These
parsers are sometimes called shift/reduce parsers,
because one often shifts token onto the stack prior to
deciding to do a reduction.

— Top-down: One starts at the start symbol for the
grammar, and replaces non-terminals with the right-
hand-side of rules until one gets down to terminals
which match the input. (Mentioned last-day.)

e Both methods can be automated. Yacc/Bison i1s a
shift/reduce parser.

Recursive Descent Parsing

* One common way to write a top-down parser by
hand 1s to rely on the run-time stack of the
language you are writing the compiler 1n.

e That 1s, for each non-terminal you write a
procedure. This procedure 1s supposed to be able
to do parsing for that non-terminal. If that non-
terminal 1s the right hand-side of a rule, the
procedure will try to match any tokens 1n the rule
to the input, and recursively call procedures for
non-terminals on the right hand side of the rule.

Example

e Consider:
sentence -> nounPhrase verbPhrase .
nounPhrase -> article noun.
article -> a | the .

e This might yield procedures such as:
void sentence (void) {nounPhrase();verbPhrase;}
void nounPhrase(void) {article(); noun();}
void article(void) {if (token==""a"") match(*“a”);
else 1f (token == “the’”) match(“‘the”);
else error(); }

* We imagine token is a global variable provided by the
scanner/lexer.

What if a non-terminal has
multiple things it goes to?

We mentioned last day that one problem with ambiguous
grammars was that we can’t figure out what to put on the
stack when doing top-down parsing. Isn’t this the same
problem?

No. As long as the grammar is not ambiguous, we can take
an approach like for article above. Consider S->AB | CD.
We could write:

void S() { AQ); B(); if(parseError()) {rewind(); C(); D();
I3
rewind() returns the string to where we started
parsing S. This 1s called backtracking.

Ideally, we want to design our grammars so we
don’t need to do backtracking.

[eft Recursion Removal

e Another 1ssue with recursive descent 1is that it will
tend to go into an infinite loop if you have a left-
recursive rule. For example, a rule like expr ->
expr + term | term where left hand side
nonterminal 1s also the leftmost nonterminal on
the right-hand side of the rule.

* This can be fixed by changing the above to expr -
> term + expr | term , but note this makes + into a
right associative operator.

e Code would look like:
void expr(void) {term(); if(token == “+”’){match(*+”);

expr();}}

Fixing Associativity

Notice 1f we write the above in EBNF 1t

becomes expr -> term {+ term}, a term

followed by O or more + term’s. So we see

this could be handled by using a loop rather

than recursion in our procedure:

void expr() {term(); while(token ==
“+”){match(*“+7); term();} }

Just after the second call to term we can handle
the associativity as we desire.

Left Factoring

A right recursive rule like:
<expr> -> <term> @ <expr> | <term>
Can also be rewritten in EBNF as:
<expr> -> <term> [@ <expr>]

This is called left factoring.
Consider:

<if-statement> -> if(<expr>) <statement> |
if(<expr>) <statement> else <statement>

This cannot be directly translated into code as both rules
begin with the same prefix, but we can “factor out” the
prefix:

<if-statement> -> if(<expr>) <statement> [else <statement>]
This can be code viewing the [] as an 1f clause:

void ifStatement() {match(“if”); match(“(”); expression(); match(**)”);

statement(); if(token=="else”){match(“else’); statement();} }

Predictive Parsing

As we mentioned above, we would like to avoid
backtracking.

This means we need a way to predict which rule to
select for a given nonterminal.

For grammars which meet two conditions we now
describe this can be done.

The 1dea 1s that the parser will do a single-symbol
lookahead ahead and use that to determine which
rule to use.

More on Predictive Parsing

Consider a rule of the form A -> o, o, aisl...1 o .

The first condition is that the first symbols of each
of the rules must be distinct.

For example, for the grammar:

<factor> ::= (<expr>)l<number>

<number> ::= <digit> {<digit>}

<digit> ::= 0I11213141516171819
We need First((<expr>)) and First(<number>) to
be disjoint.
First((<expr>)) = {(} and First (<number>) =
First(<digit>) = {0, 1,2,3,4,5,6,7, 8,9} so the
condition holds.

Second Criteria for Predictive

Parsing

e If we have rule of the form A->a[P]y (I.e., we
have an optional [3), then the set of first tokens 3

can go to must be distinct from the set of tokens
that could immediately follow 3.

* For example
A > B [C] D.
C->aE | bF.
D-> cG.

Then First(C) = {a, b} and Follow(C) ={c}. So the
criteria would hold.

