

Precedence, EBNFs and Syntax

Diagrams.

CS152.
Chris Pollett.

Sep. 22, 2008.

Outline.

•	 Disambiguiting rules, Precedence,
Associativity.

•	 EBNFs and Syntax Diagrams.

Recalling Ambiguity.

•	 Recall last Wednesday we had the grammar:

<expr> ::= <expr> + <expr> | <expr> * <expr> | (<expr>)
| <number>.
<number> ::= <number> <digit> | <digit>.
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

•	 Consider the expression 3 + 4 * 5.
•	 It actually has two distinct parse trees using the

grammar of a couple slides back:
–	 One corresponds to 3 + (4 *5).
–	 The other to (3 + 4) *5.

•	 Worse, these two expressions evaluate to different
things.

•	 Grammars which have two distinct parse trees for
the same string are called ambiguous.

Leftmost Derivations.

•	 If a derivation in each step always operates on its leftmost

non-terminal, then it is called a leftmost derivation.
•	 It turns out that having distinct parse trees for the same

string is equivalent to having two distinct leftmost
derivations for the same string.

•	 In the example above, one derivation begins.
<expr> => <expr> * <expr> => <expr> + <expr> *<expr>
the other as.

<expr> => <expr> + <expr> => <number> + <expr>=>
<digit> + <expr> => 3 + <expr> => 3+ <expr> * <expr>

 and the rest of the derivations are the same.

PDAs.

•	 There are algorithms (such as CYK) which work for parsing any CFG

ambiguous or not.
•	 They are typically slow -- O(n3) -- and they don’t address the problem

of the fact that ambiguous grammars often yield strings with two
“meanings”.

•	 To do parsing people instead, prefer to use a machine model like the
finite automata model we briefly discussed for regular expressions.

•	 For CFGs, this model is basically a finite automata together with a
stack, a push down automata. (PDA).

•	 When trying to parse a grammar, the approach is to initially shift the
start symbol for the grammar unto the stack.

•	 Then in each step we check is the top symbol of the stack a non-
terminal? If it is, we pop it and replace it with a right hand side of a
rule with involving that non-terminal.

•	 If there a terminal on the top of the stack we check if the input has that
terminal. If it does we read the terminal/token from the input and pop
the terminal from the stack.

•	 We keep going till the string is parsed.

Disambiguating Rules.

•	 The problem with ambiguous grammars is that there may

be more than one rule that could be pushed onto the stack
in a given step.

•	 One way to solve this problem (and this can be done in
YACC) is to give a precedence to the rules.

•	 I.e., we could say do rule <expr> ::= <expr> + <expr> before
<expr> ::= <expr> * <expr>.

•	 This yields the parenthesization 3 + (4 * 5).
•	 Alternatively, we could modify our grammar to remove the

problem:

<expr> ::= <expr> + <expr> | <term>.

<term> ::= <term> * <expr> | (<expr>) | <number>
.

•	 This has the same effect as giving precedence to the rules.

Associativity.

•	 Consider 3 + 4 + 5. This could be viewed as either

(3 + 4) +5 or 3 + (4 +5).
•	 The first would say + is left associative, the

second right associative.
•	 Our current grammar, using leftmost derivations,

favors a left associative parse trees for +.
•	 For +, it doesn’t really matter; however, for -,

notice (3 - 4) - 5 ≠ 3 - (4 - 5).
•	 We can modify our grammar to make + either left

or right associative, by replacing <expr> ::=
<expr> + <expr> with either <expr> ::= <term> +
<expr> or <expr> ::= <expr> + <term>

EBNFs
.
•	 EBNF stands for extended BNF.
•	 It allows us slightly more general rules to make it easier to

write down grammars.
•	 For example, rather than have to write

<number> ::= <number> <digit> | <digit>
to say that a <number> a string of one or more <digits>,
one can write instead.

<number> ::= digit {digit}

here {} is used to denote zero of more repetitions.

•	 Another abbreviation is [] for optional. So one can write
if (<expr>) <statement> [else <statement>]
to indicate the else clause is optional.

Syntax Diagrams.

• Sometimes a diagramming notation called syntax

diagrams is used to indicate grammar rules. For

instance, Oracle documentation often uses this.

•	 In syntax diagrams a circle is used for a terminal
and a box for a non-terminal.

•	 The left hand side of the rule is indicated by a
word above an arc coming into the diagram. Arcs
are used to indicate connections between parts of
the rule.

•	 So <noun-phrase> ::= <article> <noun> and
<article> ::= a | the might be draws as:

Example Diagram.

