Precedence, EBNFs and Syntax
Diagrams

CS152
Chris Pollett
Sep. 22, 2008.

Outline

e Disambiguiting rules, Precedence,
Associativity

e EBNFs and Syntax Diagrams

Recalling Ambiguity

Recall last Wednesday we had the grammar:
<expr> .= <expr> + <expr> | <expr> * <expr> | (<expr>)
| <number>

<number> ::= <number> <digit> | <digit>
<digit>::=0111213141516171819

Consider the expression 3 + 4 * 5.

It actually has two distinct parse trees using the
grammar of a couple slides back:

— One corresponds to 3 + (4 *5)

— The other to (3 + 4) *5
Worse, these two expressions evaluate to different
things.

Grammars which have two distinct parse trees for
the same string are called ambiguous.

I eftmost Derivations

e If a derivation in each step always operates on its leftmost
non-terminal, then it is called a leftmost derivation.

e It turns out that having distinct parse trees for the same
string 1s equivalent to having two distinct leftmost
derivations for the same string.

* In the example above, one derivation begins
<expr> => <expr> * <expr> => <expr> + <expr> *<expr>
the other as

<expr> => <expr> + <expr> => <number> + <expr>=>
<digit> + <expr> => 3 + <expr> => 3+ <expr> * <expr>

and the rest of the derivations are the same.

PDASs

There are algorithms (such as CYK) which work for parsing any CFG
ambiguous or not.

They are typically slow -- O(n?) -- and they don’t address the problem
of the fact that ambiguous grammars often yield strings with two
“meanings”.

To do parsing people instead, prefer to use a machine model like the
finite automata model we briefly discussed for regular expressions.

For CFGs, this model is basically a finite automata together with a
stack, a push down automata. (PDA).

When trying to parse a grammar, the approach is to initially shift the
start symbol for the grammar unto the stack.

Then 1n each step we check is the top symbol of the stack a non-
terminal? If it 1s, we pop it and replace it with a right hand side of a
rule with involving that non-terminal.

If there a terminal on the top of the stack we check if the input has that
terminal. If it does we read the terminal/token from the input and pop
the terminal from the stack.

We keep going till the string 1s parsed.

Disambiguating Rules

The problem with ambiguous grammars is that there may
be more than one rule that could be pushed onto the stack
in a given step.

One way to solve this problem (and this can be done in
YACC) is to give a precedence to the rules.

I.e., we could say do rule <expr> ::= <expr> + <expr> before
<expr> ::= <expr> * <expr>.

This yields the parenthesization 3 + (4 * 5).
Alternatively, we could modify our grammar to remove the
problem:

<expr> ::= <expr> + <expr> | <term>
<term> ::= <term> * <expr> | (<expr>) | <number>

This has the same effect as giving precedence to the rules.

Associativity

Consider 3 + 4 + 5. This could be viewed as either
B3+4)+50r3+(4+5).

The first would say + is left associative, the
second right associative.

Our current grammar, using leftmost derivations,
favors a left associative parse trees for +.

For +, it doesn’t really matter; however, for -,
notice (3-4)-5#3-(4-)).

We can modify our grammar to make + either left
or right associative, by replacing <expr> ::=
<expr> + <expr> with either <expr> ::= <term> +
<eXpr> or <expr> ::= <expr> + <term>

EBNFs

EBNF stands for extended BNF.

It allows us slightly more general rules to make it easier to
write down grammars.

For example, rather than have to write
<number> ::= <number> <digit> | <digit>

to say that a <number> a string of one or more <digits>,
one can write instead

<number> ::= digit {digit}

here {} 1s used to denote zero of more repetitions.
Another abbreviation 1s [] for optional. So one can write
if (<expr>) <statement> [else <statement>]

to indicate the else clause 1s optional.

Syntax Diagrams

Sometimes a diagramming notation called syntax
diagrams i1s used to indicate grammar rules. For
instance, Oracle documentation often uses this.

In syntax diagrams a circle is used for a terminal
and a box for a non-terminal.

The left hand side of the rule is indicated by a
word above an arc coming into the diagram. Arcs
are used to indicate connections between parts of
the rule.

S0 <noun-phrase> ::= <article> <noun> and
<article> ::= a | the might be draws as:

Example Diagram

