ML data abstractions, Operations
on Types

CS152
Chris Pollett
Nov. 19, 2008.

Outline

Finish up References and Recursive
Datatypes

Type Equivalence
Type Conversion
Control Structures

As we talk about the above we'll continue to
introduce ML..

Pointers and References

We went over the last two slides on Monday quickly so I
am briefly revisiting them.

One type which does not correspond to a set operation 1s
the pointer or reference type.

This types corresponds to the set of all addresses that refer
to a specified type.

In C we could declare such a type using a syntax like:
typedef int* IntPtr;

To create a reference in ML we can do things like: val x =
ref v;

To create an actual reference type we could do:
datatype ref_int = ref of int;

We can modify a ref the value of a variable using :=
We can get the value of a ref variable with !

Recursive Datatypes

e ML allows one to build up datatypes
recursively:
datatype 'label btree =
Empty |
Node of 'label * 'label btree * 'label btree;

* One can then define functions on these
recursive types.

Functions Using Retferences

* We can use functions and references to do message passing in ML in a
similar fashion to how we did it in Scheme:

datatype message = GetBalance | Withdraw of int;
fun make_ atm data GetBalance = !data:int

| make_atm data (Withdraw x) =

(data := !data - x;

ldata) (* parentheses are like begin/end in Scheme *)

val b = make_atm (ref 100);
b GetMessage;
b (Withdraw 10);

 make_atm is of type fn : int ref -> message -> int. Recall from last day,
that we said that via currying such a type was roughly the same as fn : int ref
* message -> int

e Note: the return type is an int. This might be awkward for some kinds
of messages. To get around this we could create a datatype responses
(like messages) for handling the types of each of the responses.

Functions Using Recursive
Datatypes

e As we saw on the last slide, we can define
functions for complex datatype by providing one
pattern for each constructor of the datatype.

e So for our btree type we could define a function:

fun sum(Empty) =0

| sum(Node(a, left, right)) = a + sum(left) +
sum(right);

e This would be a function of type: int*int btree ->
int

Type Equivalence

Type equivalence 1s the problem of determining whether two types are
the same.

There are two main approach used by programming languages to do
this: (1) use structural equivalence, (2) use name equivalence.

Two types are structurally equivalent if they are built of out base types
in the same way.

For instance, if I defined by ¢ and d to be int*char, then they would be
structurally equivalent type. However, neither would be equivalent to
the type char * int;

Two items have name equivalent types if the names of their types are
the same. So if X was of type ¢ above and y was of type d, they would
not be of name equivalent types.

Most languages use a mixture of name and structural equivalence in
determining if two items are of the same type.

Type Conversion

Sometimes we have the need to convert from one type to a
different type.

Conversions might be implicit/explicit, where implicit
conversions are called coercions. For example in C:
1.0 * x/2 /* 2 1s coerced to a float */

(char)65 /* the int 65 1s explicitly converted to a char */
(char) is called a cast.

If you convert from a bigger type to a smaller type it is
called a narrowing. (like char example above).

The opposite kind of conversion is called a widening.

Different languages take different approaches to how often
the programmer needs to explicitly convert types.

Type Checking

Type checking is the process a translator goes through to verify that all
constructs in a program make sense in terms of its constants, variables,
procedures, and other entities.

Type checking can be either dynamic or static depending on whether
it occurs at run-time or not.

An essential part of type checking is called type inference. This is
where the types of an expression are inferred from the types of its sub-
expressions.

Given the typing of two sub-expressions of an expression, one needs to
check if the operation that is being applied two subexpression makes
sense in terms of their types. This is called a type compatibility
check.

In an assignment compatibility check of el = e2; the left hand side
value (an 1-value) must a reference to a place to store the right hand
side value (r-value).

+

Type Inference

) i
We next consider the process of finding the most general /L \
types of the items in an expression based on the use those a 1
items.

Consider the syntax tree of a[i]+1.

A type checker would look up the types of each of the leaf
items and percolate up a type for the internal nodes.

Suppose we have the type of 1 as int. Are we forced on the
types of the rest of the tree? Yes.

In general, you might do a traversal of the tree, always
labeling the nodes with the most general type.

As we do this we might need to check that the type given to a
node by its subtrees will match with the type we are
expecting for that node.

This is called unification and it might result in types in the
node and the types in its sub-trees becoming narrower.

If the type of a node changed then we retype the subtree of
the weaker type.

Three Conditions for Type
Unification

* Any type variable unifies with any type expression

* Any two type constants (that is, things like int or
char) unify only if they are the same type.

* Any two type constructions (array, struct,
recursive types) unify only if they are applications
of the same type constructor and all of their
component types also unify.

