
ML data abstractions, Operations
on Types

CS152
Chris Pollett

Nov. 19, 2008.

Outline

• Finish up References and Recursive
Datatypes

• Type Equivalence
• Type Conversion
• Control Structures

• As we talk about the above we'll continue to
introduce ML.

Pointers and References
• We went over the last two slides on Monday quickly so I

am briefly revisiting them.
• One type which does not correspond to a set operation is

the pointer or reference type.
• This types corresponds to the set of all addresses that refer

to a specified type.
• In C we could declare such a type using a syntax like:

typedef int* IntPtr;
• To create a reference in ML we can do things like: val x =

ref v;
• To create an actual reference type we could do:

datatype ref_int = ref of int;
We can modify a ref the value of a variable using :=
We can get the value of a ref variable with !

Recursive Datatypes

• ML allows one to build up datatypes
recursively:
datatype 'label btree =

Empty |
Node of 'label * 'label btree * 'label btree;

• One can then define functions on these
recursive types.

Functions Using References
• We can use functions and references to do message passing in ML in a

similar fashion to how we did it in Scheme:
datatype message = GetBalance | Withdraw of int;
fun make_atm data GetBalance = !data:int

| make_atm data (Withdraw x) =
(data := !data - x;

 !data) (* parentheses are like begin/end in Scheme *)
val b = make_atm (ref 100);
b GetMessage;
b (Withdraw 10);
• make_atm is of type fn : int ref -> message -> int. Recall from last day,

that we said that via currying such a type was roughly the same as fn : int ref
* message -> int

• Note: the return type is an int. This might be awkward for some kinds
of messages. To get around this we could create a datatype responses
(like messages) for handling the types of each of the responses.

Functions Using Recursive
Datatypes

• As we saw on the last slide, we can define
functions for complex datatype by providing one
pattern for each constructor of the datatype.

• So for our btree type we could define a function:
fun sum(Empty) = 0
| sum(Node(a, left, right)) = a + sum(left) +

sum(right);
• This would be a function of type: int*int btree ->

int

Type Equivalence
• Type equivalence is the problem of determining whether two types are

the same.
• There are two main approach used by programming languages to do

this: (1) use structural equivalence, (2) use name equivalence.
• Two types are structurally equivalent if they are built of out base types

in the same way.
• For instance, if I defined by c and d to be int*char, then they would be

structurally equivalent type. However, neither would be equivalent to
the type char * int;

• Two items have name equivalent types if the names of their types are
the same. So if x was of type c above and y was of type d, they would
not be of name equivalent types.

• Most languages use a mixture of name and structural equivalence in
determining if two items are of the same type.

Type Conversion
• Sometimes we have the need to convert from one type to a

different type.
• Conversions might be implicit/explicit, where implicit

conversions are called coercions. For example in C:
1.0 * x/2 /* 2 is coerced to a float */
(char)65 /* the int 65 is explicitly converted to a char */

• (char) is called a cast.
• If you convert from a bigger type to a smaller type it is

called a narrowing. (like char example above).
• The opposite kind of conversion is called a widening.
• Different languages take different approaches to how often

the programmer needs to explicitly convert types.

Type Checking
• Type checking is the process a translator goes through to verify that all

constructs in a program make sense in terms of its constants, variables,
procedures, and other entities.

• Type checking can be either dynamic or static depending on whether
it occurs at run-time or not.

• An essential part of type checking is called type inference. This is
where the types of an expression are inferred from the types of its sub-
expressions.

• Given the typing of two sub-expressions of an expression, one needs to
check if the operation that is being applied two subexpression makes
sense in terms of their types. This is called a type compatibility
check.

• In an assignment compatibility check of e1 = e2; the left hand side
value (an l-value) must a reference to a place to store the right hand
side value (r-value).

Type Inference
• We next consider the process of finding the most general

types of the items in an expression based on the use those
items.

• Consider the syntax tree of a[i]+i.
• A type checker would look up the types of each of the leaf

items and percolate up a type for the internal nodes.
• Suppose we have the type of i as int. Are we forced on the

types of the rest of the tree? Yes.
• In general, you might do a traversal of the tree, always

labeling the nodes with the most general type.
• As we do this we might need to check that the type given to a

node by its subtrees will match with the type we are
expecting for that node.

• This is called unification and it might result in types in the
node and the types in its sub-trees becoming narrower.

• If the type of a node changed then we retype the subtree of
the weaker type.

+

[]

 a i

i

Three Conditions for Type
Unification

• Any type variable unifies with any type expression
• Any two type constants (that is, things like int or

char) unify only if they are the same type.
• Any two type constructions (array, struct,

recursive types) unify only if they are applications
of the same type constructor and all of their
component types also unify.

