
Even More on Data Types and
ML

CS152
Chris Pollett

Nov. 17, 2008.

Outline

• Finish up Type Constructors

• As we talk about the above we'll continue to
introduce ML.

More Type Constructors
• Last day, we talked about simple types and how to

build new types from simple types using:
Cartesian product, Records, Union, and Subset.

• Functions provide another way to make types.
• Given two types U and V, the set of all functions

from U to V gives rise to a type.
• In ML you could create such a type with a line

like:
 type int_fun = int -> int;
• We could use this type with a line like:

val f:int_fun = fn x => 2*x;
• In class we talked about currying (also in book).

Arrays (Vectors)
• If U in the type U-> V is an initial segment of the integers: say 0, 1, 2

.. up to some m; then we could view a function arr:U->V as an array
where arr(i) is the ith element of the array.

• Languages often differ on whether the end point of the array can be
dynamically set. C,C++ versus say Java.

• Some languages like Ada support the ability to set the start and end
point of array indexes, say from -15 to 15.

• Other languages like Perl, PHP, Javascript, etc support associative
arrays when we can have arbitrary key value pairs stored in arrays.

• In SML, we saw that constant sized arrays could be faked just using
Cartesian product. SML also supports a vector type (and an array
type):
val b = #["first-element", "second"];

• Each element of a vector has the same type. In the case above the type
for the complete object is: string vector

• The ith element of a Vector.sub(b, i);
• The length of the vector can be found using: Vector.length(b);
• To access functions without Vector prefix use open Vector;

Lists in ML
• Related to arrays, ML also has a built-in facility

for lists:
[1, 2, 3]; (* same as 1::2::3::nil *)
nil; (* empty list *)
[1,2]@[3,4]; (*concatenates to make [1,2,3,4] *)
hd([1,2,3]); (* returns head of list. I.e., 1 *)
tl([1,2,3]); (*returns tail of list. I.e., [2,3] *)

• As with vectors and arrays, each element in the
list needs to be of the same type.

• We could create a new list type with a line like:
type int_list_type = int list;

Lists and Functions
• You can use patterns with lists when you are writing

functions to make very succinct code:
fun reverse(nil) = nil
| reverse(x::xs) = reverse(xs)@[x];
• If we didn't use patterns we might have to type something

like:
fun reverse(L) = if L = nil then nil
 else reverse(tl(L)) @[hd(L)];
• Notice the type of this function is fn : 'a list -> 'a list.
• Here 'a denotes an arbitrary type. So this function could be

applied to an int list, a string list, etc. This is an example of
polymorphism.

• Converted above to a tail recursive function in class.

Pointers and References
• One type which does not correspond to a set

operation is the pointer or reference type.
• This types corresponds to the set of all addresses

that refer to a specified type.
• In C we could declare such a type using a syntax

like: typedef int* IntPtr;
• To create a reference in ML we can do things like:

val x = ref v;
• To create an actual reference type we could do:

datatype ref_int = ref of int;
We can modify a ref the value of a variable using :=
We can get the value of a ref variable with !

Recursive Datatypes.

• ML allows one to build up datatypes
recursively:
datatype 'label btree =

Empty |
Node of 'label * 'label btree * 'label btree;

• One can then define functions on these
recursive types.

