Even More on Data Types and
ML

CS152
Chris Pollett
Nov. 17, 2008.

Outline

* Finish up Type Constructors

e As we talk about the above we'll continue to
introduce ML..

More Type Constructors

Last day, we talked about simple types and how to
build new types from simple types using:
Cartesian product, Records, Union, and Subset.

Functions provide another way to make types.

Given two types U and V, the set of all functions
from U to V gives rise to a type.

In ML you could create such a type with a line
like:

type int_fun = int -> 1nt;

We could use this type with a line like:

val f:int_fun = fn x => 2*x;

In class we talked about currying (also in book).

Arrays (Vectors)

If U in the type U-> V is an initial segment of the integers: say 0, 1, 2
.. up to some m; then we could view a function arr:U->V as an array
where arr(1) is the ith element of the array.

Languages often differ on whether the end point of the array can be
dynamically set. C,C++ versus say Java.

Some languages like Ada support the ability to set the start and end
point of array indexes, say from -15 to 15.

Other languages like Perl, PHP, Javascript, etc support associative
arrays when we can have arbitrary key value pairs stored in arrays.

In SML, we saw that constant sized arrays could be faked just using
Cartesian product. SML also supports a vector type (and an array

type):
val b = #["first-element", "second"];

Each element of a vector has the same type. In the case above the type
for the complete object is: string vector

The ith element of a Vector.sub(b, 1);
The length of the vector can be found using: Vector.length(b);
To access functions without Vector prefix use open Vector;

Lists in ML

e Related to arrays, ML also has a built-in facility
for lists:

[1,2,3]; (*same as 1::2::3::n1l *)

nil; (* empty list *)

[1,2]@[3.4]; (*concatenates to make [1,2,3,4] *)
hd([1,2,3]); (* returns head of list. I.e., 1 *)
tl([1,2,3]); (*returns tail of list. IL.e., [2,3] *)

e As with vectors and arrays, each element in the
list needs to be of the same type.

* We could create a new list type with a line like:
type int_list_type = int list;

I 1sts and Functions

* You can use patterns with lists when you are writing
functions to make very succinct code:

fun reverse(nil) = nil
| reverse(x::xs) = reverse(xs)@|[x];

e If we didn't use patterns we might have to type something
like:

fun reverse(L) = if L = nil then nil
else reverse(tl(L)) @[hd(L)];
* Notice the type of this function is fn : 'a list -> 'a list.

e Here 'a denotes an arbitrary type. So this function could be
applied to an int list, a string list, etc. This 1s an example of
polymorphism.

e (Converted above to a tail recursive function in class.

Pointers and References

One type which does not correspond to a set
operation 1s the pointer or reference type.

This types corresponds to the set of all addresses
that refer to a specified type.

In C we could declare such a type using a syntax
like: typedef int* IntPtr;

To create a reference in ML we can do things like:
val x =ref v;

To create an actual reference type we could do:
datatype ref_int = ref of int;

We can modity a ref the value of a variable using :=
We can get the value of a ref variable with !

Recursive Datatypes.

e ML allows one to build up datatypes
recursively:
datatype 'label btree =
Empty |
Node of 'label * 'label btree * 'label btree;

* One can then define functions on these
recursive types.

