
More CFGs, Parse Trees,

Ambiguity

CS152

Chris Pollett

Sep. 17, 2008.

Outline

• More about CFGs
• Parse Trees and Abstract Syntax Trees

• Ambiguity

More about CFGs

• Recall we are learning about how to specify the

syntax of a programming language.
• On Monday, we were learning about context-free

grammars and gave an example grammar for a
very tiny fragment of English:
1. sentence --> noun-phrase verb-phrase .
2. noun-phrase --> article noun.
3. article --> a | the.
4. noun --> girl | dog.
5. verb-phrase --> verb noun-phrase.
6. verb --> sees | pets.

Remarks

•	 Using this grammar we gave a derivation of the sentence:

the girl sees a dog.
•	 If you look at that grammar, you’ll see that you could

derive sentences like: “the dog pets the girl.”
•	 So although it is syntactically correct, it doesn’t quite make

sense. Syntax ≠ Semantics.
• In terms of programming, you can have syntactically

correct programs which don’t do anything useful.

What is a context free grammar?

•	 A context free grammar consists of a sequence of rules
(called productions) of the form: some structure-name,
followed by --> or ::=, followed by a string consisting of
token symbols and 0 or more additional structure names.

•	 Structure names are sometimes called nonterminals and
token symbols are sometimes called terminals.

•	 A context free grammar also has a distinguished
nonterminal called the start symbol.

•	 The start symbol for our English example was sentence.
•	 All derivations must begin from the start symbol.
•	 The language of a grammar consists of all strings s of

only terminals which have derivations beginning from the
start symbol in grammar and which terminate with s.

Why are CFGs called context-free?

• You could imagine productions where you have

more than one thing on the left hand side:
<sentence> ::= <start-of-sentence> <noun-phrase> <verb-

phrase>

<start-of-sentence> <article> ::= The | A

<start-of-sentence> ::= empty-string

…

• This would allow you to capitalize the start of
sentence, but the rule:
<start-of-sentence> <article> ::= The | A

uses the context in which the <article> appears.

Some More Example Grammars

•	 Here is a grammar for arithmetic expressions involving +

and *:
<expr> ::= <expr> + <expr> | <expr> * <expr> | (<expr>) |

<number>

<number> ::= <number> <digit> | <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

•	 Note the recursive nature of the rules above: <expr> and
<number> appear on both sides of their rules. This is
completely legal.

•	 Give the derivation for (2 + (11 * 5)).
•	 The book gives a fragment of the C’s grammar.
•	 It has productions like:

<external-declaration> ::= <function-definition> |
<declaration>

Parse Trees and Abstract Syntax Trees

•	 Syntax establishes structure not meaning.
•	 One way of associating meaning with a particular

program is to use the structure one obtains from
parsing it and annotate that structure with code to
give it meaning.

•	 This is sometimes called syntax-directed
semantics.

•	 The structure typically associated with parsing a
program is called its parse tree.

Example Parse Tree

sentence

noun-phrase verb-phrase .

article noun verb noun-phrase

noun-phrase

article noun

the girl

a dog

sees

Remarks

•	 Notice how the parse tree is completely specified by the

grammar rules that were used in the derivation.
–	 i.e., if a rule like

<struct1> ::= <struct2> <struct3> terminal
Was used then in the parse tree <struct2>, <struct3>, and terminal will

be children of <struct1>
•	 Try to come up with the parse tree for (2 + (11*5)) in the

grammar we gave a couple slides back.
•	 All the terminals and nonterminals in a derivation are

included in a parse tree.
•	 Not all of these may be necessary to determine completely

the syntactic structure of an expression.

More remarks

• For example, the relevant part of the tree

needed to provide semantics to (2 + (1 * 5))
might look like:

+

*2

1 5

• Such abbreviated trees are called abstract
syntax trees or just syntax trees.

Ambiguity.

• Consider the expression 3 + 4 * 5.
• It actually has two distinct parse trees using the

grammar of a couple slides back:
– One corresponds to 3 + (4 *5).
– The other to (3 + 4) *5.

• Worse, these two expressions evaluate to different
things.

• Grammars which have two distinct parse trees for
the same string are called ambiguous.

• We’ll discuss how to avoid making such
grammars on Monday.

