More CFGs, Parse Trees,
Ambiguity

CS152
Chris Pollett
Sep. 17, 2008.

Outline

 More about CFGs
e Parse Trees and Abstract Syntax Trees
* Ambiguity

More about CFGs

* Recall we are learning about how to specity the
syntax of a programming language.

* On Monday, we were learning about context-free
grammars and gave an example grammar for a
very tiny fragment of English:

. sentence --> noun-phrase verb-phrase .

. noun-phrase --> article noun.

. article --> a | the.

. noun --> girl | dog.

. verb-phrase --> verb noun-phrase.
. verb --> sees | pets.

AN U AN W N~

Remarks

Using this grammar we gave a derivation of the sentence:
the girl sees a dog.

If you look at that grammar, you’ll see that you could
derive sentences like: “the dog pets the girl.”

So although it 1s syntactically correct, it doesn’t quite make
sense. Syntax #Semantics.

In terms of programming, you can have syntactically
correct programs which don’t do anything useful.

What 1s a context free grammar?

A context free grammar consists of a sequence of rules
(called productions) of the form: some structure-name,
followed by --> or ::=, followed by a string consisting of
token symbols and O or more additional structure names.

Structure names are sometimes called nonterminals and
token symbols are sometimes called terminals.

A context free grammar also has a distinguished
nonterminal called the start symbol.

The start symbol for our English example was sentence.
All derivations must begin from the start symbol.

The language of a grammar consists of all strings s of
only terminals which have derivations beginning from the
start symbol in grammar and which terminate with s.

Why are CFGs called context-free’?

* You could imagine productions where you have
more than one thing on the left hand side:

<sentence> ::= <start-of-sentence> <noun-phrase> <verb-
phrase>

<start-of-sentence> <article> ::= The | A
<start-of-sentence> ::= empty-string

e This would allow you to capitalize the start of
sentence, but the rule:

<start-of-sentence> <article> ::= The | A
uses the context in which the <article> appears.

Some More Example Grammars

Here 1s a grammar for arithmetic expressions involving +
and *:

<expr> ::= <expr> + <expr> | <expr> * <expr> | (<expr>) |
<number>

<number> ::= <number> <digit> | <digit>
<digit>::=0111213141516171819

Note the recursive nature of the rules above: <expr> and
<number> appear on both sides of their rules. This 1s
completely legal.

Give the derivation for (2 + (11 * 5)).
The book gives a fragment of the C’s grammar.
It has productions like:

<external-declaration> ;.= <function-definition> |
<declaration>

Parse Trees and Abstract Syntax Trees

Syntax establishes structure not meaning.

One way of associating meaning with a particular
program 1s to use the structure one obtains from
parsing it and annotate that structure with code to
give it meaning.

This 1s sometimes called syntax-directed
semantics.

The structure typically associated with parsing a
program 1s called its parse tree.

Example Parse Tree

noun-phrase

sentence

verb-phrase

article noun verb noun-phrase
the girl sees
noun-phrase
article noun
| |
a dog

Remarks

Notice how the parse tree 1s completely specified by the
grammar rules that were used 1n the derivation.
— 1.e.,1f a rule like

<structl> ::= <struct2> <struct3> terminal

Was used then in the parse tree <struct2>, <struct3>, and terminal will
be children of <struct1>

Try to come up with the parse tree for (2 + (11%*5)) in the
grammar we gave a couple slides back.

All the terminals and nonterminals in a derivation are
included 1n a parse tree.

Not all of these may be necessary to determine completely
the syntactic structure of an expression.

More remarks

o For example, the relevant part of the tree
needed to provide semantics to (2 + (1 * 3J))
might look like:

|

\
3 >
\

1 5

e Such abbreviated trees are called abstract
syntax trees or just syntax trees.

Ambiguity.

Consider the expression 3 + 4 * 5.

It actually has two distinct parse trees using the
grammar of a couple slides back:

— One corresponds to 3 + (4 *5).

— The other to (3 + 4) *5.

Worse, these two expressions evaluate to different
things.

Grammars which have two distinct parse trees for
the same string are called ambiguous.

We’ll discuss how to avoid making such
grammars on Monday.

