
 
.

.
 .

  

Lexical and Parse Structure of
 
Programming Languages
 

CS152
 

Chris Pollett
 
Sep. 15, 2008.
 



.

  .
 .
  .

Outline 

• Introduction to Syntax 
• Lexical Structure 
• Context Free Grammars 



.

.

 
 

.
.

 

Introduction to Syntax
 
• Recall there were two aspects of making a

programming language machine understandable: 
– Giving it a syntax 
– Providing semantics to that syntax.

• We are now going to discuss the two main aspects
of specifying the syntax of a programming
language: 
– Indicating its lexical elements 
– Giving it a context free grammar

• We will then use the C we have just learned (not
today, but next week probably) to talk about
common tools for performing analysis of lexical
elements and parsing of grammars. 



.

 
 

 
 

 
 

Lexical Structure
 

•	 The lexical structure of a programming language 
is the structure of its tokens. 

•	 For C, these tokens would include the words: if,
while, do, for, functions names, etc. 

•	 During the scanning phase of programming 
translation, the translator searches the through the
program and as it finds a token it recognizes,
passes it to the parser so that the parser can act on
it to see how it matches against grammar rules. 



.

 .
  

 

Types of Tokens
 
• Reserved Words (keywords): Things like if, while,

for … 
– Called reserved because they cannot be used for as one

of the other kinds of tokens. I.e., we can’t do things like
declare a variable named “if”. 

• Literals (contants): Things like 42 or “hello” 
• Special Symbols: “;”, “<=”, “+” … 
• Identifiers: Things like variable names or function 

names. 



.
         

          
         

          
            

    
            

      
          

    
         

            
          

         
  .

          .
    .

More on Identifiers
 
•	 Some languages have a maximum length for identifiers or ignore

characters after the first so many characters. For example, C64 Basic
treated the first two characters of a variable as significant. 

•	 Consider the two identifiers: foo and foobar. When tokenizing, if we
see foo should we return the token? Or should we keep scanning to see
if we really have foobar? 

•	 The standard practice is to keep scanning in case we have foobar. This
is called the principle of longest substring. 

•	 We use token delimeters such as whitespace or structural entities to
determine when a token ends. 

•	 Some old languages like Fortran are so called fixed-format because 
they used to be input using things like punchcards. Rather than use the
principle of longest substring, they might tokenize based on things like
the tokens that have been seen so far on the line: 
IF = 2
 
IF(IF. LT . 0) IF = IF + 1

ELSE IF = IF +2
 



.
      
         

      
        

        
  

           
 

 

              
 

          
     

Specifying Tokens
 
•	 Tokens are often specified using regular expressions. 
•	 Regular expressions are built out of characters together with three

basic operations: concatenation, repetition, and choice (selection). 
•	 Concatenation is usual indicating by justaposition two or more 

characters. For example, the expression ab means the character 
concatenated to b. 

•	 Repetition is indicated using *, to indicate 0 or more occurrences of 
the pattern. 
–	 For example, a* means 0 or more a’s. (aa)* means 0 or more aa’s. 
–	 Notice we can use parentheses in expressions. 
–	 Although, it can be defined from concatenation and *, + is used to denote

1 or more occurrences of a pattern. For example, a+ is 1 or more a’s. 
•	 Choice is indicated with a |. So (a|b) means either the string a or the 

string b. 
•	 As a more complicated example, (a|b)*c matches the tokens aabbc, c,

babc, but not bca or aab. 



.

 

Some Abbreviations
 
•	 We saw + for 1 or more on the last slide. 
•	 You can indicate ranges of numbers/ letter using a hyphen:

[0-9] or [a-z].
•	 A backslash can be used to escape some special characters 

\(, \*, etc.
•	 A question mark ? can be used to indicate something is

optional.
•	 So [0-9]+(\.[0-9]+)? Could be used to represent a floating

point literal.
•	 Many Unix utilities use regular expressions for text

searches. For example grep. We will use lex/flex for 
tokenizing our programming languages. 



.

  

.

Brute Force Tokenizing
 
•	 If we weren’t using a tool like lex or flex, how could we

write a program which scans the input looking for tokens?
•	 We could make a finite automata for the regular expression

(CS154 stuff) and implement that in C. This is essentially
what lex and flex do. 

•	 There would be one accepts state of the finite automata
per distinct token.

•	 When an accept state is reached the parser is called with
the given token, it computes something and we return to
our automata’s start state. 

•	 To implement an a finite automata using a while loop:
while(c= nextchar()){ switch(cur_state){switch(c){} }} 



.
           
   

  
  .

 
 

 
 

           
             
       

          
  

            

             
      

Context Free Grammars
 
•	 These are very much like the grammars you might have seen in

grade school. For example:
1. sentence --> noun-phrase verb-phrase . 
2. noun-phrase --> article noun 
3. article --> a | the. 
4. noun --> girl | dog. 
5. verb-phrase --> verb noun-phrase. 
6. verb --> sees | pets. 

•	 We have a collection rules. The left hand side being the larger
structural unit and the right hand side saying what it is made out of.
Nonitalic items are tokens; italic items are structures. 

•	 A computer program might be built from rules like: program -->
subcomponent1 subcomponent2 … 

•	 Often to denote structures we write them in < >. So would have 
<sentence>. 

•	 Rather than use --> we use ::= or =. This gives one essentially BNF
notation: <sentence> ::= <noun-phrase> <verb phrase> “.” 



.
 

 
  

  
  
   
   

Derivations
 
• Let’s look at how we could derive the string “the
 

girls sees the dog” using our grammar.
 
sentence => noun-phrase verb-phrase .
 
⇒article noun verb-phrase . 
⇒the noun verb-phrase . 
⇒the girl verb-phrase . 
⇒the girl verb noun-phrase . 
⇒the girl sees noun-phrase . 
⇒the girl sees article noun . 
⇒the girl sees a noun . 
⇒the girl sees a dog . 


