Heap, Variables, References, and
Garbage

CS152
Chris Pollett
Oct. 13, 2008.



Outline

Dynamic Allocation
Variables and Constants
Aliases and Problems
Garbage



Introduction

On Wednesday, we were talking about environments
These were mappings of names to environments.

We had just discussed how this worked for local variables
in block structured languages:

When we make a function call, we push locations onto the
stack as needed for the local variables; when the call
completes these locations are popped.

Parameter variables that don't fit into the available registers
are handled similarly.

It 1s usually arranged that after the call returns the top of
the stack will have the return value.

Usually one has a couple of offset pointers into the stack,
such as a pointer to the top and a base pointer for the start
of the frame. How long a variable lives on the stack is its

lifetime.



The Heap

It 1s often the case that one has a programming task for
which we don't know how much memory will be needed
until runtime.

For example, we store user input and we don't know in
advance how much there will be.

It also might be convenient to allow the lifetime of this
data to exactly match that of a given block.

To facilitate this kind of allocation (called dynamic
allocation), most modern programming languages have a
runtime heap.

In C, when we make a call to malloc, we are allocating
memory from this heap; a call to free deletes from the
heap.

In C++, or Java when we use new we are allocating from
the heap.



More on the Heap

Typically, the memory for the heap is allocated starting from the
bottom of the program environment growing towards the top; the stack
on the other hand, grows downward to the bottom; and the static area
is separate from either.

C/C++ use pointers to refer to locations within the heap. A NULL or O
address 1is used as the address for pointers which are not yet assigned
to allocated memory.

Other languages such as Java use the name references.

The sections of heap memory currently allocated may become holey as
memory becomes deallocated. So the heap structure needs mechanisms
both to remember what is currently free/allocated; as well as
occasionally to defragment this memory.

Some languages such as Java have a garbage collector which is used to
deallocate memory that is no longer referenced.

Note some languages allow us to set which of the heap, stack, or
global storage should be used for storing a variable. For example, the
keyword static in C.



Variables

e A variable 1s an object whose stored value
can change during execution.

* So a variable can be completely specified
by: Name, Other Attributes (such as type
and size), Location, and Value.

e Sometimes people use box and circle
diagrams to represent the main aspects of

this:
@
Location




Assignment

* The principle way a variable changes value
1s through assignment: x= e; where € 1s an

expression.

e The semantics of this are that e 1s evaluated
to a value, which 1s then copied into the

location of x.

e If e 1s another variable y, then the

asmgnmentCy, /f

@l[

e viewed as

@‘

O




More on Assignment

It 1s important to distinguish between the location of a
variable and the value stored there.

The value stored at a location 1s often called an r-value
(because this 1s what a variable often means when it 1s on
the right hand side of an assignment); the location of a
variable 1s often called the 1-value.

Some languages like ML make this distinction explicit. For
instance, X would refer to the location, !x to the value. So
to increment X one would write: X := !x+1;

C automatically dereferences 1-values to r-values, and to
do things explicitly uses & to get the 1-value of an r-value
and * to get r-value of an l-value.



Assignment Types

In some languages an assignment x=y actually binds the
location of x to y. This is called assignment by sharing.

An alternative to this 1s to allocate a new location, copy the
value of y to this new location, and bind x to the new
location. This might be called assignment by cloning.

These two kinds of semantics are often called pointer
semantics to distinguish them from the usual storage
semantics.

For example, Java uses assignment for sharing for objects,
but not for simple data.



Constants

A constant is a language entity that has a fixed value for the duration
of its existence in a program.

A constant is like a variable except that it has no location attribute only
a value attribute.

One sometimes says it has value semantics.

The notion of a constant is symbolic. A constant is essentially a name
for a value.

Entities like "hello there", 42 and the like are literals not constants.

Constants come in two main flavors: compile-time, whose value can
be determine at the time of translation; and static, whose value can
only be determined after the program loads.(For instance, the location
of a global variable).

Only the latter actually need to be stored in memory.

One can also have function constants, function variables, and function
literals.



Aliases

An alias occurs when the same object 1s bound to two
different names at the same time.

For example, two pointers to the same object.

Aliases can cause side-effects, where a side-effect of a
statement to be any change in the value of a variable that
persists beyond the execution of the statement.

For example, if x and y point to the same thing. Then
*y=2; has two side-effects changing the value of y and
changing the value of x -- the latter may not have been
intended.

Another example i1s x and y point to the same memory.
We call free(y); //Now x points to memory which has
been deallocated -- this is called a dangling reference.



Garbage Collection

* One way to reduce the problem of dangling
references 1s to not allow explicit deallocation of
memory.

* Instead, a runtime program called a garbage
collector is used which determines which
locations on the heap are no longer referenced,
and deallocate them.

e Java, Smalltalk, and many functional languages
use garbage collectors.



