
Heap, Variables, References, and
 
Garbage
. 

CS152. 
Chris Pollett.
 

Oct. 13, 2008.
 



Outline. 

• Dynamic Allocation .
• Variables and Constants. 
• Aliases and Problems .
• Garbage .



Introduction.
 
•	 On Wednesday, we were talking about environments 
•	 These were mappings of names to environments.
•	 We had just discussed how this worked for local variables

in block structured languages:
•	 When we make a function call, we push locations onto the

stack as needed for the local variables; when the call
completes these locations are popped.

•	 Parameter variables that don't fit into the available registers
are handled similarly.

•	 It is usually arranged that after the call returns the top of
the stack will have the return value. 

•	 Usually one has a couple of offset pointers into the stack,
such as a pointer to the top and a base pointer for the start
of the frame. How long a variable lives on the stack is its
lifetime. 



The Heap
 
•	 It is often the case that one has a programming task for

which we don't know how much memory will be needed
until runtime. 

•	 For example, we store user input and we don't know in
advance how much there will be. 

•	 It also might be convenient to allow the lifetime of this 
data to exactly match that of a given block.

•	 To facilitate this kind of allocation (called dynamic 
allocation), most modern programming languages have a 
runtime heap. 

•	 In C, when we make a call to malloc, we are allocating
memory from this heap; a call to free deletes from the
heap.

•	 In C++, or Java when we use new we are allocating from
the heap. 



More on the Heap.
 
•	 Typically, the memory for the heap is allocated starting from the

bottom of the program environment growing towards the top; the stack
on the other hand, grows downward to the bottom; and the static area
is separate from either. 

•	 C/C++ use pointers to refer to locations within the heap. A NULL or 0 
address is used as the address for pointers which are not yet assigned
to allocated memory. 

•	 Other languages such as Java use the name references. 
•	 The sections of heap memory currently allocated may become holey as 

memory becomes deallocated. So the heap structure needs mechanisms
both to remember what is currently free/allocated; as well as
occasionally to defragment this memory. 

•	 Some languages such as Java have a garbage collector which is used to
deallocate memory that is no longer referenced. 

•	 Note some languages allow us to set which of the heap, stack, or
global storage should be used for storing a variable. For example, the 
keyword static in C. 



Variables.
 
•	 A variable is an object whose stored value

can change during execution.
•	 So a variable can be completely specified

by: Name, Other Attributes (such as type
and size), Location, and Value. 

•	 Sometimes people use box and circle 
diagrams to represent the main aspects of 
this: 

Value 
Name 

Location 



Assignment
 
•	 The principle way a variable changes value 

is through assignment: x= e; where e is an 
expression.

•	 The semantics of this are that e is evaluated 
to a value, which is then copied into the
location of x. 

• If
assignment: =y; // can be viewed as y 

x 

e is another variable y, then the



More on Assignment
 
•	 It is important to distinguish between the location of a

variable and the value stored there. 
•	 The value stored at a location is often called an r-value 

(because this is what a variable often means when it is on
the right hand side of an assignment); the location of a
variable is often called the l-value. 

•	 Some languages like ML make this distinction explicit. For
instance, x would refer to the location, !x to the value. So
to increment x one would write: x := !x+1; 

•	 C automatically dereferences l-values to r-values, and to 
do things explicitly uses & to get the l-value of an r-value 
and * to get r-value of an l-value. 



Assignment Types. 

•	 In some languages an assignment x=y actually binds the 
location of x to y. This is called assignment by sharing. 

•	 An alternative to this is to allocate a new location, copy the
value of y to this new location, and bind x to the new
location. This might be called assignment by cloning. 

•	 These two kinds of semantics are often called pointer 
semantics to distinguish them from the usual storage 
semantics. 

•	 For example, Java uses assignment for sharing for objects,
but not for simple data. 



Constants.
 
•	 A constant is a language entity that has a fixed value for the duration

of its existence in a program. 
•	 A constant is like a variable except that it has no location attribute only

a value attribute. 
•	 One sometimes says it has value semantics. 
•	 The notion of a constant is symbolic. A constant is essentially a name 

for a value. 
•	 Entities like "hello there", 42 and the like are literals not constants. 
•	 Constants come in two main flavors: compile-time, whose value can 

be determine at the time of translation; and static, whose value can
only be determined after the program loads.(For instance, the location
of a global variable). 

•	 Only the latter actually need to be stored in memory. 
•	 One can also have function constants, function variables, and function

literals. 



Aliases.
 
•	 An alias occurs when the same object is bound to two

different names at the same time. 
•	 For example, two pointers to the same object.
•	 Aliases can cause side-effects, where a side-effect of a 

statement to be any change in the value of a variable that
persists beyond the execution of the statement.

•	 For example, if x and y point to the same thing. Then
*y=2; has two side-effects changing the value of y and
changing the value of x -- the latter may not have been
intended. 

• Another example is x and y point to the same memory.

We call free(y); //Now x points to memory which has
 
been deallocated -- this is called a dangling reference.
 



Garbage Collection. 

•	 One way to reduce the problem of dangling
references is to not allow explicit deallocation of 
memory. 

•	 Instead, a runtime program called a garbage
collector is used which determines which 
locations on the heap are no longer referenced,
and deallocate them. 

•	 Java, Smalltalk, and many functional languages
use garbage collectors. 


