
More on Data Types and ML

CS152
Chris Pollett

Nov. 12, 2008.

Outline

• Simple Types
• Type Constructors

• As we talk about the above we'll continue to
introduce ML.

Introduction
• Last day, we said types were a way to

classify program data, we defined data types
as a set of values, and we defined some
things we 'd like to be able to do with types
like type checking, type inference, etc.

• We are now going to look at the different
kinds of types that programming languages
have.

• We'll also talk about the specific case of
ML.

Simple Types
• Simple types are types that have no other structure than

their inherent arithmetic or sequential structure.
• Every language comes with a set of predefined types

which are simple. For example, in C and Java we have
types like int, char, float, etc.

• The pre-defined types in ML are:
– Integers (int). Literals look like: 0, 123, ~12 (notice ~ used for

minus sign)
– Reals (real). Literals look like: 0.1, ~0.77, 1.1E9, ~2.1E~22
– Booleans (bool). Literals look like: true and false.
– Strings (string). Literals look like: "", "hi there", "\n", etc. As in C,

\ is used to escape characters and we can use them for special
characters.

Some Operations on Predefined
Types in ML

• For reals and ints we can use the arithmetic operations +, -,
*, /, ~.
– These can be written either infix or prefix:

2 *3; (* or *) op* (2,3);
– In general, if one define a function:

fun my_mult (x, y) = x*y;
 one can make it prefix using the command:
 infix my_mult;

• For strings we can use the operation ^ to concatenate
strings.

• For bools we can use the comparison operators: =, <, >,
<=, >=, <> (not equals). We can also build up expressions
with not, andalso, orelse: 1 = 2 orelse 2<3;

Other kinds of Simple Types
• Many languages support enumerated types.

– For example, in C one can use the keyword enum:
enum Color {Red, Green, Blue};

Here Red, Green, Blue are ordered as they abbreviate 0, 1, 2
– In ML, one uses a syntax like:

datatype Color_Type = Red | Green | Blue;
And no assumptions about how they are stored can be used. It

should be noted ML also supports an analog of typedef: type
<identifier> = <type expression>; (* for example, type my_int
= int; *)

• Ada supports creating new types with subrange
declarations:
Type Unit_Interval is range 0.0..1.0;

Type Constructors

• Since data types are sets, set operations can
be used to construct new types out of
existing ones.

• Some operations we can use include
product, union, function set, and subset.

Cartesian Product
• Given two sets U,V we can create a new set

consisting of ordered pairs from these sets:
U x V = {(u, v) | u is in U and v is in V}

• In ML, * is used for Cartesian Product. We can
write declaration like:
type my_int_pair = int * int;
val a:my_int_pair = (2, 3);

• Typically, one has a function to select out of such
a product called a component selector:
#1(2, 3); (*returns 2 *) #2(2,3); (*returns 3*)

• The inputs to a function can be typically viewed as
a cartesian product.

Records
• Closely related to a cartesian product, is the notion of a

record.
• In a product the components of the object are named 1, 2,

3… or 0,1,2.. (depending or the language).
• A record is a like a product but where the components can

be given meaningful names like ssn, age, etc.
• Roughly, a record corresponds to a C struct:

struct Person {char *name; int age;};
• ML lets one define and use records using syntax like:

type person = {name: string, age:int};
val my_person:person = {name="bob", age=12};
#name(my_person);

Variant Records
• Another way of building a new type from two old ones, is

to use a union type or variant record.
• Recall we say this in YACC when we dealt with yytype. In

C, the syntax for creating new unions might look like:
union IntOrReal {int i; double r;} b;
Recall, this allocates memory for the larger of the two items and we

can store one or the other kind of item in b.
• In ML we can create variant records using datatype:

datatype IntOrReal = IsInt of int | IsReal of real;
val x = IsReal(2.3);
fun my_print x = case x of
 IsInt(i) => print("integer") |
 IsReal(r) => print("real");

Subset

• Some languages like Ada allow you to
create types as subsets of existing types.

• For instance, in Ada you might be able to
do:
Subtype IRInt is IntOrReal(IsInt);

