Data Types and ML

CS152
Chris Pollett
Nov. 10, 2008.



Outline

* A Brief Introduction to ML
e Data Types and Type Information



ML

ML stands for Meta Language.

It 1s a strongly-typed functional language created by
Robert Milnor at the University of Edinburgh in the 1970s.

It was originally designed as the underlying programming
language for theorem provers that made use of the Logic
for Computable Functions (LCF).

Provers (HOL, HOL Lite, Isabelle) that use ML have been
used to do verification of computer hardware systems as
well as to verify math proofs. See recent AMS article

ML is closely related to the derivative language OCAML,
F# (Microsoft), and 1s one of the most influential
functional programming languages.



Getting started with ML

For this class, we will be using Standard ML of
New Jersey, which can be downloaded from:
http://www.smlnj.org/

Once you have set your path variable correctly
you can run ML at the command prompt with a
line like:

sml

This gets you 1nto interactive mode. The prompt
will look like a hyphen. To get out of ML type
CTRL-d.

To read a file into ML type a line like:

- use "myfile.sml";

Comments in ML look like (* comment *)



More ML

e At the command prompt you can type in things
you would like to evaluate:
1+2%*3;
—valit=7;int
 [talics denote the response from SML. Here 'it'1s a
special variable that receives the value of any

expression typed in interactive mode, val stand for
value, and int 1s the type of the result.

e To tell ML to evaluate something you need to
terminate your line with a semi-colon. Hitting a
new line without a semicolon, will cause ML to
prompt you with an = which 1s ML's way of
asking for more input.



ML Type Inference

Here 1s an example of defining a function in ML.:
fun fact n =1f n =0 then 1 else n * fact(n - 1);

After typing this line ML will respond with:

val fact = fn : int -> int

This gives a complete typing for this function. It says it is a
function from the integers to the integers.

Notice we didn't have to tell ML what the types of things
were: From the assignment n = 0, ML inferred that n had
to be an integer and used that to complete the type spec of
the function.

This is called type inference. The particular algorithm
used by ML is called Hindley-Milner type checking.

We could have written the above function as:
fun fact (n: int): int = if n =0 then 1 else n*fact(n -1);
To use our function we can type fact 5;



Data Types and Type Information

Typing plays a particularly important role in ML, but it
also plays a role in most programming languages.

So we are going to spend some time now discussing typing
in programming languages and also learn ML as we do it.

To begin program data is often classified according to its

type.

A data type at its simplest is a set of values. Sometimes
people extend the definition to also include as part of the
type .the operations that we allow on it.

An example type might be an int, and an example
operation might be multiplication on int's.



What things do we need to be able to
say/do about types?

e type-checking - if we use data of a given type in an
expression, statement, function, 1s it being used
consistently? I.e., do the types of the inputs to a function
math the types of the data given to it?

e type-inference - we saw this on the last slide

e type-constructions - this is a mechanism to define new
instances of a given type. For example, in C we can do: int
c; In ML, we can do: val ¢ =3.2; (* uses type inference *)

e type-declaration - sometimes we need to be able to build
more complicated types out of simple ones.

e type-equivalence - if we allow user defined types, the
translator often needs some mechanism for telling if two
type-declarations define the same type.



Type Systems

The methods used for constructing types, the type
equivalence algorithm, the type inference and correctness
rules, are collectively referred to as the type system of the
programming language.

If a language definition specifies a complete type system
that can be applied statically and guarantees that all data-
corrupting errors will be detected at the earliest point, the
the language 1s said to be strongly typed. Ex: Ada, ML,
Haskell

If the language allows loopholes then it 1s said to be
weakly typed. Ex: C

Languages without static types systems are usually called
untyped. Ex: Lisp, Scheme, Perl, PHP Javascript, etc.



