
Data Types and ML

CS152
Chris Pollett

Nov. 10, 2008.

Outline

• A Brief Introduction to ML
• Data Types and Type Information

ML
• ML stands for Meta Language.
• It is a strongly-typed functional language created by

Robert Milnor at the University of Edinburgh in the 1970s.
• It was originally designed as the underlying programming

language for theorem provers that made use of the Logic
for Computable Functions (LCF).

• Provers (HOL, HOL Lite, Isabelle) that use ML have been
used to do verification of computer hardware systems as
well as to verify math proofs. See recent AMS article

• ML is closely related to the derivative language OCAML,
F# (Microsoft), and is one of the most influential
functional programming languages.

Getting started with ML
• For this class, we will be using Standard ML of

New Jersey, which can be downloaded from:
http://www.smlnj.org/

• Once you have set your path variable correctly
you can run ML at the command prompt with a
line like:
sml

• This gets you into interactive mode. The prompt
will look like a hyphen. To get out of ML type
CTRL-d.

• To read a file into ML type a line like:
- use "myfile.sml";

• Comments in ML look like (* comment *)

More ML
• At the command prompt you can type in things

you would like to evaluate:
1+2*3;
– val it = 7; int

• Italics denote the response from SML. Here 'it' is a
special variable that receives the value of any
expression typed in interactive mode, val stand for
value, and int is the type of the result.

• To tell ML to evaluate something you need to
terminate your line with a semi-colon. Hitting a
new line without a semicolon, will cause ML to
prompt you with an = which is ML's way of
asking for more input.

 ML Type Inference
• Here is an example of defining a function in ML:

fun fact n = if n = 0 then 1 else n * fact(n - 1);
• After typing this line ML will respond with:

val fact = fn : int -> int
• This gives a complete typing for this function. It says it is a

function from the integers to the integers.
• Notice we didn't have to tell ML what the types of things

were: From the assignment n = 0, ML inferred that n had
to be an integer and used that to complete the type spec of
the function.

• This is called type inference. The particular algorithm
used by ML is called Hindley-Milner type checking.

• We could have written the above function as:
fun fact (n: int): int = if n =0 then 1 else n*fact(n -1);

• To use our function we can type fact 5;

Data Types and Type Information
• Typing plays a particularly important role in ML, but it

also plays a role in most programming languages.
• So we are going to spend some time now discussing typing

in programming languages and also learn ML as we do it.
• To begin program data is often classified according to its

type.
• A data type at its simplest is a set of values. Sometimes

people extend the definition to also include as part of the
type ,the operations that we allow on it.

• An example type might be an int, and an example
operation might be multiplication on int's.

What things do we need to be able to
say/do about types?

• type-checking - if we use data of a given type in an
expression, statement, function, is it being used
consistently? I.e., do the types of the inputs to a function
math the types of the data given to it?

• type-inference - we saw this on the last slide
• type-constructions - this is a mechanism to define new

instances of a given type. For example, in C we can do: int
c; In ML, we can do: val c =3.2; (* uses type inference *)

• type-declaration - sometimes we need to be able to build
more complicated types out of simple ones.

• type-equivalence - if we allow user defined types, the
translator often needs some mechanism for telling if two
type-declarations define the same type.

Type Systems
• The methods used for constructing types, the type

equivalence algorithm, the type inference and correctness
rules, are collectively referred to as the type system of the
programming language.

• If a language definition specifies a complete type system
that can be applied statically and guarantees that all data-
corrupting errors will be detected at the earliest point, the
the language is said to be strongly typed. Ex: Ada, ML,
Haskell

• If the language allows loopholes then it is said to be
weakly typed. Ex: C

• Languages without static types systems are usually called
untyped. Ex: Lisp, Scheme, Perl, PHP Javascript, etc.

