More C for Java Programmers

CS152

Chris Pollett
Sep. 10, 2008.

Outline

Struct’s

Memory allocation
File I/0

Buffering

make

Struct’s

e (C has a mechanism for collecting together a bunch of
existing data types into a new one using struct’s.

e These can be thought of as classes without member
functions.
struct Person
{
char name[12];
int age;
}; //notice the ;
struct Person p, *ptr;
strcpy(p.name, “Bob”); //in string.h. Note p.name[4] = “\0” after
// many useful string functions like strlen, strcmp, etc are in string.h
p.age = 3;
ptr = &p;
printf(“%d %s %s”, p.age, (*ptr).name, ptr->name);

More on struct’s

You can also declare:
struct

{
int a,b;

} test;

test.a = 5; /* so have declared a variable test but have not given the kind of struct it is a name */
The syntax struct Person p; of the last slide 1s sometimes awkward. To
simplify it you can write

typedef struct Person person_type;

person_type a,b.c;
Using structs and pointers you can create recursive data structures:

struct mylist

{
int a;
struct mylist *next, *prev;
} test;
Remark: can fake classes by using struct’s which have function
pointers as members.

Memory Allocation

* Sometimes we don’t know how much memory we need for a job at compile
time. For instance, we might not know how big a list will grow or how big an
array we need to hold a string.

e (C has a runtime heap and supports allocating/deallocating memory from it at
runtime:
#include <stdio.h>
#include <stdlib.h> //for malloc and free
int main()
{
int *p;
p = (int *)malloc(10*sizeof(int)); /*sizeof returns number of bytes an int takes (could do
sizeof(person_type)) from last slide */
if(p==NULL)
{
return 1; //bail out
¥
/* do stuff. To refer to the location of ith int can do (p + 1), its value is *(p + 1) or p[i]
*/
free(p); // got to free or create a memory leak -- unlike Java no garbage collection
return 0;

)
e Notice we cast the result of malloc to be of type int rather than void*.

File I/0O

The usual C File I/0 1s tightly connected to the Unix
notion of a stream.

We have already been using streams: name printf sends its
data to the default output stream, stdout.

Functions for I/O are all mainly 1n stdio.h. To see what are
available functions look 1n Wikipedia.

There 1s a also a stdin and and a stderr. For example,
Int a;
scanf(“%d”, &a); //reads from stdin one int into a.
Functions like printf, scanf, getc, etc which operate on the

standard streams all have analogs which operate on files:
fprintf, fscanf, fgetc, etc.

Example Reading From a File in C

#include <stdio.h>
int main(int argc, char * argv[]) //notice getting command-line args
{

int c;

FILE *fp;

if(argc < 2)

{

return 1; //bail if no file specified

¥
fp = fopen(argv[1], “r”); // r is for reading, w for write, rb for binary, etc
while ((c = fgetc(fp)) != EOF)
{
printf(“%c”, (char)c);
¥
fclose(fp);
return 0;

h

Buffering

As an example of how the language and the platform are connected,
consider input in C on Unix:
printf("Hit a key to continue");
c= getchar();
Although we are only requesting a single character from stdin, since in Unix
stdin is line-buffered, we have to wait till someone hits enter to get our
character.
In Dos C which has a different default buffering, we wouldn’t have to hit
enter.
We can make OS calls to change the buffering in Unix, but this just shows,
how we program is influenced by the platform we are on:
#include <termios.h>
/...
struct termios tio;
tcgetattr(0, &tio);
tio.c_lflag &= ~ICANON;
tcsetattr(0, TCSANOW, &tio);
printf("Hit a key to continue");
c= getchar();

make

make 1s a build utility -- a utility to compile and link large

software projects -- developed by Stuart Feldman at Bell
Labs in 1977.

It heavily influenced many later build tools such as ant,
and 1t also has been ported to many platforms. For
example, Microsoft OS’s use nmake.

make 1s very similar in some ways to Prolog, and can be
viewed as perhaps the most commonly used declarative
language.
Typically make is run from the command-line with a line
like:

make rarget
The make utility would then search the current directory

for a file called Makefile and then tries to satisty the target
goal.

Makefile Structure

A Makefile consists of rules of the form:
targetl: depends_onl depends_on2 ...
<tab>command]l
<tab>command?2

<blankline>

target2: depends_onl depends_on2 ... #etc
1s used for a single-line comment
Notice the use of tabs is important!
Here are some example targets:

myprog: myprog.o
cc -0 $@ $<

myprog.o: myprog.c
cc-c-0%@ $<

$@ refers to the target $< refers to the first dependency

clean:

rm -f myprog myprog.o

More on Maketfiles

You can declare variables in a Makefile using the format varname = value
like:
CC =gcc
SUBDIRS =io linkedlist
These variables could then be used:

all : $(SUBDIRS)

$(CC) historylesson.c -o historylesson

An example of a multi-line make rule might be something like:
10 :
@echo "Making io..."

cdio

make all
Make uses the file modification dates to figure out what needs to be re-
compiled. Typically, it only performs incremental compiles.

There are various shortcuts you can use for rules that I won’t go into very
much. For example, if one had the target hello.o . It would match the rule:

% .0 : %.C

