

More C for Java Programmers.

CS152.
Chris Pollett.

Sep. 10, 2008.

Outline.

• Struct’s.
• Memory allocation.
• File I/O .
• Buffering.
• make.

Struct’s.

• C has a mechanism for collecting together a bunch of

existing data types into a new one using struct’s.

• These can be thought of as classes without member

functions.
struct Person
{

char name[12];
int age;

}; //notice the ;
struct Person p, *ptr;
strcpy(p.name, “Bob”); //in string.h. Note p.name[4] = ‘\0’ after
// many useful string functions like strlen, strcmp, etc are in string.h
p.age = 5;
ptr = &p;
printf(“%d %s %s”, p.age, (*ptr).name, ptr->name);

More on struct’s.

•	 You can also declare:
struct
{

int a,b;
} test;
test.a = 5; /* so have declared a variable test but have not given the kind of struct it is a name */.

•	 The syntax struct Person p; of the last slide is sometimes awkward. To
simplify it you can write
.

typedef struct Person person_type;

person_type a,b,c;

•	 Using structs and pointers you can create recursive data structures:
struct mylist
{

int a;

struct mylist *next, *prev;

} test;

•	 Remark: can fake classes by using struct’s which have function
pointers as members.

Memory Allocation.

•	 Sometimes we don’t know how much memory we need for a job at compile

time. For instance, we might not know how big a list will grow or how big an
array we need to hold a string.

•	 C has a runtime heap and supports allocating/deallocating memory from it at
runtime:

#include <stdio.h>

#include <stdlib.h> //for malloc and free
.
int main()

{

int *p;

p = (int *)malloc(10*sizeof(int)); /*sizeof returns number of bytes an int takes (could do

sizeof(person_type)) from last slide */

if(p == NULL)

{

return 1; //bail out
}
/* do stuff. To refer to the location of ith int can do (p + i), its value is *(p + i) or p[i]

*/
free(p); // got to free or create a memory leak -- unlike Java no garbage collection
return 0;

}

•	 Notice we cast the result of malloc to be of type int rather than void*.

File I/O.

•	 The usual C File I/O is tightly connected to the Unix

notion of a stream.
•	 We have already been using streams: name printf sends its

data to the default output stream, stdout.
•	 Functions for I/O are all mainly in stdio.h. To see what are

available functions look in Wikipedia.
•	 There is a also a stdin and and a stderr. For example,

int a;
scanf(“%d”, &a); //reads from stdin one int into a.

•	 Functions like printf, scanf, getc, etc which operate on the
standard streams all have analogs which operate on files:
fprintf, fscanf, fgetc, etc.

Example Reading From a File in C.
#include <stdio.h>
int main(int argc, char * argv[]) //notice getting command-line args.
{

int c;

FILE *fp;

if(argc < 2)

{

return 1; //bail if no file specified.

 }

fp = fopen(argv[1], “r”); // r is for reading, w for write, rb for binary, etc.

while ((c = fgetc(fp)) != EOF)

{

printf(“%c”, (char)c);

}

fclose(fp);

 return 0;

}

Buffering.

•	 As an example of how the language and the platform are connected,

consider input in C on Unix:
printf("Hit a key to continue");

c= getchar();

•	 Although we are only requesting a single character from stdin, since in Unix
stdin is line-buffered, we have to wait till someone hits enter to get our
character.

•	 In Dos C which has a different default buffering, we wouldn’t have to hit
enter.

•	 We can make OS calls to change the buffering in Unix, but this just shows,
how we program is influenced by the platform we are on:

#include <termios.h>

 //…

struct termios tio;

tcgetattr(0, &tio);

tio.c_lflag &= ~ICANON;

tcsetattr(0, TCSANOW, &tio);

printf("Hit a key to continue");

c= getchar();

make.

•	 make is a build utility -- a utility to compile and link large

software projects -- developed by Stuart Feldman at Bell
Labs in 1977.

•	 It heavily influenced many later build tools such as ant,
and it also has been ported to many platforms. For
example, Microsoft OS’s use nmake.

•	 make is very similar in some ways to Prolog, and can be
viewed as perhaps the most commonly used declarative
language.

•	 Typically make is run from the command-line with a line

like:

make target
.

•	 The make utility would then search the current directory
for a file called Makefile and then tries to satisfy the target
goal.

Makefile Structure.

•	 A Makefile consists of rules of the form:

target1: depends_on1 depends_on2 …
<tab>command1
<tab>command2
…
<blankline>
target2: depends_on1 depends_on2 … #etc

• # is used for a single-line comment
• Notice the use of tabs is important!
• Here are some example targets:

myprog: myprog.o

cc -o $@ $<

myprog.o: myprog.c
cc -c -o $@ $<

$@ refers to the target $< refers to the first dependency
clean:

rm -f myprog myprog.o

More on Makefiles.

•	 You can declare variables in a Makefile using the format varname = value

like:

CC = gcc
.
SUBDIRS = io linkedlist
.

•	 These variables could then be used:
all : $(SUBDIRS)

$(CC) historylesson.c -o historylesson
.
•	 An example of a multi-line make rule might be something like:

io :

@echo "Making io..."

cd io.

make all
.

•	 Make uses the file modification dates to figure out what needs to be re-
compiled. Typically, it only performs incremental compiles.

•	 There are various shortcuts you can use for rules that I won’t go into very
much. For example, if one had the target hello.o . It would match the rule:
%.o : %.c .

