Name Resolution, Overloading,
Allocation, and Lifetimes

CS152
Chris Pollett
Oct. §, 2008.



Outline

Symbol Table Organization

Name Resolution

Name Resolution and Overloading
Allocations, Lifetimes and the Environment.



Introduction

We talked about lexical versus dynamic scoping.

Lexical scoping 1s the scoping obtained by reading
the program from the top down 1n a static setting
before execution.

Dynamic scoping results from keeping track of
scope based on what 1n the program has run so far.

We gave examples of how the symbol tables of a
C program would evolve 1f lexical versus dynamic
scoping was used.

C, C++, Java mainly uses static scoping.
Interpreted languages like Lisp, Snobol, Perl,
PHP, etc tend to use dynamic scoping.



Stretching the Symbol Table

 What does the symbol table look like when we
have a struct? Consider:

void p() {
struct {
double a; int b; char c;
yy={12,2,'b"};
/* some more code */

¥

* To handle a struct we need a local symbol to store
its fields (a, b, ¢) 1n the above.

e The local symbol table cannot be delete until the
struct variable itself goes out of scope.



Symbol Table for a Struct

e The symbol table for the previous example might look
like:

(p, (void function))
(y, (struct local to p
symbtab(
(a, (double=1.2)), (b, (int = 2)), (c, (char ='D"))
)
)

e In general, any scoping structure that can be referenced
directly 1n a language must have its own symbol table.

e Examples: named scopes in Ada, structs and namespaces
in C++, classes and packages in Java.



Name Resolution and Overloading

* An important question about declarations and the operation
of the symbol table 1s to what extent the same name can be
used to refer to different things in a program?

e [t is often reasonable to allow some overloading of names.

e For example, '+' in C refers to a function that both can be
used to do both integer and double addition. It would be
painful to have to write ADDI for one, ADDF for the
other; as one does in assembly.

e If we allow overloading, how does the translator tell the
different uses apart? It needs to be able to do this to map to
machine code.



Disambiguation

Notice the problem with + 1s a problem about how
functions are looked up in the symbol table.

Which + we are talking about can be determined
by looking at the arguments of the function. For
instance, if I see 2.4 + 3.6, I know I am referring
to the + on doubles.

So when we store a function name in the symbol
table we need to store roughly its function
prototype.

So we might store:
int operator+ (int, int); //in C++ like language
double operator+ (double, double);



More on Disambiguation

Consider the function max(x,y) which returns the larger of
x and y or x if they are equal. This can be defined on int's
and on double's.

What do you do in an ambiguous situation like: max(3.1,
3); /17

C++ allows both conversion from integer to double and
vice versa. So 1s the answer 3 or 3.1.

The language spec does not say which to prefer.

In Ada, the above would be 1llegal because no automatic
conversions are allowed.

Java takes the approach that conversion to doubles should
be preferred since converting a 3 to a double doesn't lose
information but converting 3.1 to an int does.

In C++, we could overload
double max (double, int) //to be explicit



The Environment

We next consider the environment which maintains the
bindings of names to locations.

The environment can be constructed statically (at load
time), dynamically (at execution), or a mixture of the two.

For example, in Fortran all locations are bound statically;
in Lisp all locations are bound dynamically; in C++, Java,
Ada, etc.; we have a mixture of the two, some allocation 18
dynamic some static.

Not all names 1n a program may be bound at all. For
example, const int MAX = 10; can be replaced throughout
a program by 10 by the compiler. So the name will have
disappeared entirely by execution time.



Declarations and Allocations

Declarations are used to construct the environment as well
as the symbol table.

In a compiler, they are used to indicate what allocation
code the compiler 1s to generate as the declaration 1s
processed.

In an interpreter the symbol table and environment are
combined, so attribute binding by a declaration includes
the binding of locations.

In block structured languages, global variables are
typically allocated statically since they will be available for
the whole program.

Local variables on the other hand are allocated
dynamically when execution reaches the block in question.



Environments and Stacks

We saw that a stack-like mechanism was used by the symbol table to
maintain the bindings of declarations.

Similarly, the environment in a block-structured language uses a stack-
like mechanism to bind locations to local variables.

Consider the labeled blocks in C:
A:{int x; chary; /* (1) */
B:{double x; int a; /* (2) */ } /* 3*/}
As execution progresses, as each block 1s entered, the variables

declared at the beginning of the block are allocated, when the block is
exited they are de-allocated.

So the runtime stack used to holds this part of the environment might
look like (x,y)at(1); (x,y,x,a)at (2), and (X, y) again at (3), where
we imagine the end of the list is the top of the stack.

I wrote the stack like this because usually, the stack grows from the
top of memory down.



Allocation for Procedures; Lifetimes

e (Consider:

void p(){
Int x;
double y;

)

e During execution this declaration will not itself trigger execution of
the block of p.

e The local variables x and y of p will not be allocated at the point of
declaration.

* Instead x, y will be allocated when p is called.

* Also, each time p is called p is called, new local variables will be
allocated.

* We refer to each call to p as an activation of p and the corresponding
allocated memory and activation record.

e We call the allocated area of storage associated with with the
processing of a declaration an object.

e The lifetime or extent of an object is the duration of its allocation in
the environment.



