
Name Resolution, Overloading,

Allocation, and Lifetimes.

CS152.

Chris Pollett.

Oct. 8, 2008.

Outline.

• Symbol Table Organization.
• Name Resolution.
• Name Resolution and Overloading.
• Allocations, Lifetimes and the Environment.

Introduction.

•	 We talked about lexical versus dynamic scoping.
•	 Lexical scoping is the scoping obtained by reading

the program from the top down in a static setting
before execution.

•	 Dynamic scoping results from keeping track of
scope based on what in the program has run so far.

•	 We gave examples of how the symbol tables of a
C program would evolve if lexical versus dynamic
scoping was used.

•	 C, C++, Java mainly uses static scoping.
Interpreted languages like Lisp, Snobol, Perl,
PHP, etc tend to use dynamic scoping.

Stretching the Symbol Table.

•	 What does the symbol table look like when we

have a struct? Consider:
void p() {

struct {
double a; int b; char c;

 } y = {1.2, 2, 'b'};
/* some more code */ .

}
•	 To handle a struct we need a local symbol to store

its fields (a, b, c) in the above.
•	 The local symbol table cannot be delete until the

struct variable itself goes out of scope.

Symbol Table for a Struct.

•	 The symbol table for the previous example might look

like:
(p, (void function))
(y, (struct local to p

symbtab(
(a, (double=1.2)), (b, (int = 2)), (c, (char = 'b'))
)

)
)
• In general, any scoping structure that can be referenced

directly in a language must have its own symbol table.

•	 Examples: named scopes in Ada, structs and namespaces

in C++, classes and packages in Java.

Name Resolution and Overloading.

•	 An important question about declarations and the operation

of the symbol table is to what extent the same name can be
used to refer to different things in a program?

•	 It is often reasonable to allow some overloading of names.
•	 For example, '+' in C refers to a function that both can be

used to do both integer and double addition. It would be
painful to have to write ADDI for one, ADDF for the
other; as one does in assembly.

•	 If we allow overloading, how does the translator tell the
different uses apart? It needs to be able to do this to map to
machine code.

Disambiguation

•	 Notice the problem with + is a problem about how

functions are looked up in the symbol table.
•	 Which + we are talking about can be determined

by looking at the arguments of the function. For
instance, if I see 2.4 + 3.6, I know I am referring
to the + on doubles.

•	 So when we store a function name in the symbol
table we need to store roughly its function
prototype.

•	 So we might store:
int operator+ (int, int); //in C++ like language.
double operator+ (double, double);

More on Disambiguation.

•	 Consider the function max(x,y) which returns the larger of

x and y or x if they are equal. This can be defined on int's
and on double's.

•	 What do you do in an ambiguous situation like: max(3.1,
3); //?

•	 C++ allows both conversion from integer to double and
vice versa. So is the answer 3 or 3.1.

•	 The language spec does not say which to prefer.
•	 In Ada, the above would be illegal because no automatic

conversions are allowed.
•	 Java takes the approach that conversion to doubles should

be preferred since converting a 3 to a double doesn't lose
information but converting 3.1 to an int does.

•	 In C++, we could overload
double max (double, int) //to be explicit

The Environment.

•	 We next consider the environment which maintains the

bindings of names to locations.
•	 The environment can be constructed statically (at load

time), dynamically (at execution), or a mixture of the two.
•	 For example, in Fortran all locations are bound statically;

in Lisp all locations are bound dynamically; in C++, Java,
Ada, etc.; we have a mixture of the two, some allocation is
dynamic some static.

•	 Not all names in a program may be bound at all. For
example, const int MAX = 10; can be replaced throughout
a program by 10 by the compiler. So the name will have
disappeared entirely by execution time.

Declarations and Allocations.

•	 Declarations are used to construct the environment as well

as the symbol table.
•	 In a compiler, they are used to indicate what allocation

code the compiler is to generate as the declaration is
processed.

•	 In an interpreter the symbol table and environment are
combined, so attribute binding by a declaration includes
the binding of locations.

•	 In block structured languages, global variables are
typically allocated statically since they will be available for
the whole program.

•	 Local variables on the other hand are allocated
dynamically when execution reaches the block in question.

Environments and Stacks.

•	 We saw that a stack-like mechanism was used by the symbol table to

maintain the bindings of declarations.
•	 Similarly, the environment in a block-structured language uses a stack-

like mechanism to bind locations to local variables.
•	 Consider the labeled blocks in C:

A:{ int x; char y; /* (1) */
.
B:{double x; int a; /* (2) */ } /* 3*/}.

•	 As execution progresses, as each block is entered, the variables
declared at the beginning of the block are allocated, when the block is
exited they are de-allocated.

•	 So the runtime stack used to holds this part of the environment might
look like (x, y) at (1); (x, y, x, a) at (2), and (x, y) again at (3), where
we imagine the end of the list is the top of the stack.

•	 I wrote the stack like this because usually, the stack grows from the
top of memory down.

Allocation for Procedures; Lifetimes.

•	 Consider:

void p(){

int x;

double y;

}
•	 During execution this declaration will not itself trigger execution of

the block of p.

•	 The local variables x and y of p will not be allocated at the point of

declaration.

•	 Instead x, y will be allocated when p is called.
•	 Also, each time p is called p is called, new local variables will be

allocated.

•	 We refer to each call to p as an activation of p and the corresponding

allocated memory and activation record.

•	 We call the allocated area of storage associated with with the

processing of a declaration an object.

•	 The lifetime or extent of an object is the duration of its allocation in

the environment.

