
Visibility and Symbol Tables.

CS152.

Chris Pollett.

Oct. 6, 2008.

Outline.

• Visibility.
• Symbol Table.

Introduction.

•	 Recall last Wednesday we were talking about

bindings.
•	 A binding associates an attribute to name in

programming language.
•	 One common source of bindings is declarations

and these commonly occur with blocks.
•	 The scope of a binding is the region of the

program over which the binding is maintained.
•	 For example, C has the declaration before use

rule. So the scope of a binding extends from the
point just after the declaration to the end of the
block in which it is located.

Visibility.

•	 Consider:

int x;
void p() {

char x;
x='a' //assigns to char x

}

void main(){

x=2; //assigns to global x

}

•	 Declaration in nested blocks (in this case in p) take
precedence over previous declarations.

•	 The scope of the global x is the whole program but there is
a so-called scope hole over function p.

•	 The visibility of a declaration includes only those regions
where the bindings of a declaration apply.

More on Visibility.
•	 In C++, one could use the scope resolution operator to

access the global x within function p. I.e., we could write
::x to access it in p.

•	 In Ada, you can give names to scopes with a syntax like:
name : declare … begin … end .

•	 You can access variable declared in a given scope using a
syntax like name.varname ; this is called visibility by
selection.

•	 In C, global variable declarations can be accessed across
files using the extern.

•	 The declaration extern int a; //indicates program will be
linked to another compiled file where a had global scope.

The Symbol Table.

•	 Last week we said that information about static bindings

are maintained by the compiler in a symbol table.
•	 This table might be implemented using a data structure for

tables as one would see in a class like CS146. For
example, hash tables.

•	 It supports such operations as insert, lookup, and delete on
names.

•	 To maintain this table in a lexically scoped language
requires that declarations be processed in a stacklike
fashion: On entry to a block, all declarations of that block
are processed and the corresponding bindings added to the
symbol table; on exit from the block, these bindings are
"popped" restoring the previous bindings that may have
existed.

Example Program to Illustrate

Symbol Table.

int x;
char y; // (*)
void p() {

double x;

… // (**)

{ int y[10]; // (***)

}

} // (****)

void q() { int y; /* (#) */} // (##)

int main() {char x; /* (###) */}

Symbol Table Example.

•	 Names in the above program are x,y, p, q, main.

•	 x, y are associated with three different

declarations and scopes.
•	 At (**), the symbol table might look like:

(x, (double local to p), (int global)).
(y, (char global)).
(p, (void function)).

•	 At (***), the symbol table might look like:
(x, (double local to p), (int global)).
(y, (int array local to nested block in p), (char global)).
(p, (void function)).

More Symbol Table Example.

•	 When the inner block of p is finished being processed the

declaration of y would be popped, when p is finished being
processed the local declaration of x would also be popped
leaving the symbol table as:
(x, (int global))
.
(y, (char global)).

(p, (void function)).

•	 As q begins to be processed at (#), the symbol table would

look like:

(x, (int global))
.
(y, (int local to q), (char global))
.
(p, (void function)).

(q, (void function)).

•	 You should try to work out what the table looks like at
(##) and (###).

Static Versus Dynamic Scoping.

•	 The above symbol tables illustrate the kind of

scoping that might occur in a compiler as it parses
a program prior to execution.

•	 This is called static scoping.
•	 If the symbol table is managed during execution,

then declarations are processed as they are
encountered along an execution path through
program. This is called dynamic scoping.

Example Program to Illustrate Dynamic Scoping.

#include <stdio.h> .
int x = 1;
char y = 'a';
void p() { double x = 2.5;

printf("%c\n", y); // (***).
{

int y[10];
}

}
void q() { int y = 42;

printf("%d\n", x); //(**)
p();

}
int main() { char x= 'b'; // (*)

q();
return 0;

}

More Dynamic Scoping Example.

•	 If the symbol table is constructed dynamically,

then it would be constructed beginning with the
execution of main.

•	 Global declaration that occur before main would
have been processed, and the symbol table at (*)
might look like:
(x, (char = 'b' local to main), (int = '1' global))
.
(y, (char = 'a' global))
.
(p, (void function))
.
(q, (void function)).

(main, (int function)).

Yet More Dynamic Scoping Example.

•	 After main calls q, we begin processing q and the symbol

table at (**) would look like:

(x, (char = 'b' local to main), (int = '1' global)).

(y, (int = 42 local to q), (char = 'a' global)).

(p, (void function))
.
(q, (void function)).

(main, (int function)).

•	 Notice this is quite different from the symbol on entry to q
when we were doing static processing.

• Notice also each call to q might have a different symbol

table on entry to q depending on the execution path.

•	 Try to figure out what the table would look like at (***).
•	 What is the output of the program using static scoping

versus dynamic scoping?

