
A Little More Scheme

CS152
Chris Pollett
Nov. 5, 2008.

Outline

• More Message Passing
• Some built-in functions in Scheme

Closures
• Last day, we showed an example of a function returned by

a function:
(define make-new-balance (lambda (balance)
 (lambda (amount)
 (if (< balance amount) "insufficient funds"
 (begin
 (set! balance (- balance amount))
 balance)))))
• So if I call

(define my-acct (make-new-balance 100))
my-acct a function whose value of balance is 100.

• That is, this function remembers the value of balance from the scope in
which it was originally defined. This is called a closure.

• Calling (my-acct 20) uses set! to change this value of balance to a new
value.

• So we have the effect of being able to remember state in functions
defined by closures. Thus, we can use the message passing way to fake
classes.

Message Passing in Scheme
• The basic way we can set up a class in Scheme is to define a

constructor:
(define my-class (lambda (construct-arg1 …)
 (let ((my-field1 val1) ; it is also legal to nest define's in

Scheme
 (my-field2 val2) …)
 (lambda (msg . args)
 (cond ((eqv? msg msg1)
 ;do-some-action
)…
))))
• We can then create an instance of the class using:

(define my-instance (my-class construct-val1 …))
• We can then pass messages to the instance using lines like:

(my-instance msg1 msg1-args)

Some Built-in Functions
• Characters:

– Character literals can be written like: #\a, #\b, #\space, #\newline, etc.
– char=?, char<?, char-ci<?, char-alphabetic?, char-whitespace?, etc for

comparing characters
– Case conversion: char-upcase, char-downcase
– Type conversion: char->integer, integer->char

• Strings:
– String literals can be written like: "hi there"
– string=?, string<?, string-ci<?, etc, can be used for comparing strings.
– (string) - creates "", (string #\a #\b #\c) -creates "abc" etc.
– string-length - returns the length of a string
– (string-ref "hello" 3) returns 3rd char from "hello"
– (string-set! str 3 #\m) changes 3rd char of str (provided mutable) to m.
– string-copy - returns a copy of a string; string-append - concatenates the

strings in its input; (substring string start end) returns a substring of given
range.

– string->list - converts the string to a list consisting of its characters
– list->string - converts a list of chars to a string.

Vectors
• Lists in Scheme are implemented in memory as linked-lists. So you

need to traverse the first i-1 elements of a list to get to the ith element.
• This can often be slow. Vectors in Scheme are more like arrays in

other languages:
– They have a fixed number of elements, but they support random access

look-up.
• The notation for a vector is #(elt1 elt2 elt3).
• (vector) - creates the empty vector #(); (vector 'a 'b) - creates #(a b)
• (make-vector n) - creates a vector of length n; (make-vector n 'a) -

creates a vector of length n all of whose elements are a.
• vector-length - returns the length of a vector
• (vector-ref vec n) - returns n elt of vec
• (vector-set! vec n obj) - sets the nth elt of vec to obj
• (list->vector list) - converts a list to a vector
• (vector->list vec) - converts a vector to a list

Symbols

• There are a couple functions which are
useful to help one convert between strings
and symbols:
– (string->symbol "hi") outputs hi symbol
– (symbol->string 'hi) outpus "hi" string

Input
• Input and output in Scheme is done using ports which are

first-class objects. Such as #<port>
• These can be thought of as filehandles in other languages.
• (input-port? obj) - checks if obj is a port
• (current-input-port) - returns the current input port; (set-

current-input-port! port) - sets this port
• (open-input-port filename) - opens the file and returns an

input port to it.
• (close-input-port input-port) - closes the input port.
• (read port) - reads from input port. If at end of file returns an

eof-object. If no port-supplied reads from current-input-
port.

• (eof-object? obj) - checks if obj is a an end of file object.
• read-char, peek-char, char-ready? Similar to read but for

characters.

Output
• Most of these funtions have names analogous to

the names for input functions:
– current-output-port, set-current-output-port!, output-port?, open-

output-port, close-output-port.

• To write the functions are: (write obj port),
(display obj port), (write-char char port), (newline
port).

• If you do not have a port, then it defaults to the
current one.

