
Prolog and Logic Programming

CS152
Chris Pollett
Dec. 3, 2008.

Outline

• Logic and Logic Programs
• Horn Clauses
• Resolution and Unification
• Prolog

Introduction
• So far this semester we have considered three language

paradigms: procedural languages, object-oriented
languages, and functional programming languages.

• We are now going to look at one more language paradigm:
logic programming.

• Logic is closely related with computer programs. For
instance, AND, OR, NOT logic gates can be used to build
up computer circuits. We have briefly mentioned the
formula-as-types interpretation. We have also talked about
how ML served as the base language for several automated
theorem provers.

• We haven't really said what logic was though…
• So we will talk a little bit about this before we talk about

logic programming and then Prolog.

Logic and Logic Programs
• The kind of logic used in logic programming is the first-order

predicate calculus.
• When we work in first-order logic, we usual work in a particular

language.
• A language is specified by specifying its:

– Constants -- things 0 or 1
– Functions -- these may be of different arity: S(x) := x+1, Plus(x,y),

Times(x,y), …
– Predicates -- P(x), Q(x,y), … We imagine that predicates take inputs from

some domain and return a true or false answer. For example equals(x,y)
might take inputs which are natural numbers and returns true or false
depending on whether x and y are equal.

• A term in the language is either a constant, a variable, or
built from other terms using functions of the language.

• An atomic formula in the language is either a predicate
whose parameters have been filled in with terms.

More First-Order Logic
• A first-order formula is either an atomic formula or built

out of first-order formulas using AND(∧), OR (∨), NOT
(¬), IMPLIES (->), EXISTS (∃x), FORALL (∀x).

• For example, Even(x) := (∃y)(x = 2*y) is a first-order
formula expressing x is an even number. Notice 2*y and x
are terms, so x = 2*y is an atomic formula, so (∃y)(x =
2*y) is a formula.

• In the above, the variable x would be called a free variable
and the variable y is called bound.

• Notice depending on the value of x, Even(x) may be either
true or false.

• Typically in mathematics, we start with a set of formulas
(axioms) which we think are always true and we see what
others facts we are able to derive from this formulas.

• A formula derivable from our axioms is called a theorem.

Rules of Inference
• So given a set of true formulas, what are the legal

inferences we can make?
• For example, if I know A is true, I can infer A ∨ B is true.

Similarly, if I know A(t) holds, I can infer (∃y)A(t). Given A-
>B and B-> C, I can infer A->C.

• These are examples of valid rules of inference. There is a
finite list of inferences I, such that given a list of axioms A
and any statement T that follows from A, we can start from
formulas in A and only apply inferences in I to get new
formulas, and eventually reach the formula T.

• A derivation of T from A using I would be called a proof.
• A logic programming language is a notational system for

writing logic statements together with specified algorithms
for implementing inference rules.

Horn Clauses
• A Horn clause is a statement of the form:

a1 AND a2 AND … an -> b
• b is called the head of the clause, and the rest of the clause is called

the body.
• Horn clauses are particularly simple formulas which are using for

creating a computer language.
• A clause of the form ->b is called a fact, and might just be written as

b.
• As an example of how Horn clauses might be useful in terms of

expressiveness, consider the following definition of the natural
numbers:
(1) natural(0).
(2) natural(x) -> natural(successor(x)).

• To prove natural(successor(successor(0))). We can use axiom (1)
together with axiom (2) twice and modus ponens.

Resolution and Unification
• There are two aspects to derivations involving

Horn clauses and these will provide the basic
algorithmic component of Prolog: resolution and
unification.

• Given two Horn clauses:
A <- A1, …, An
B <- B1, …, Bn
where Bi = A, resolution is the rule of inference:
B <- B1, … Bi-1, A1, …, An, Bi+1, … Bn.

• Unification was the process of pattern matching
we used on the last slide to match
natural(successor(x)) and
natural(successor(successor(0))) by setting x
=successor(x).

Prolog

• We started going over my Prolog tutorial:
– http://www.cs.sjsu.edu/faculty/pollett/15.1.99f/

prolog.html

