Prolog and Logic Programming

CS152
Chris Pollett
Dec. 3, 2008.

Outline

Logic and Logic Programs
Horn Clauses

Resolution and Unification
Prolog

Introduction

So far this semester we have considered three language
paradigms: procedural languages, object-oriented
languages, and functional programming languages.

We are now going to look at one more language paradigm:
logic programming.

Logic 1s closely related with computer programs. For
instance, AND, OR, NOT logic gates can be used to build
up computer circuits. We have briefly mentioned the
formula-as-types interpretation. We have also talked about
how ML served as the base language for several automated
theorem provers.

We haven't really said what logic was though...

So we will talk a little bit about this before we talk about
logic programming and then Prolog.

Logic and Logic Programs

The kind of logic used in logic programming is the first-order
predicate calculus.

When we work in first-order logic, we usual work 1n a particular
language.
A language is specified by specifying its:

— Constants -- things O or 1

— Functions -- these may be of different arity: S(x) := x+1, Plus(x,y),
Times(X,y), ...

— Predicates -- P(x), Q(x,y), ... We imagine that predicates take inputs from
some domain and return a true or false answer. For example equals(x.,y)
might take inputs which are natural numbers and returns true or false
depending on whether x and y are equal.

A term in the language is either a constant, a variable, or
built from other terms using functions of the language.

An atomic formula in the language is either a predicate
whose parameters have been filled in with terms.

More First-Order Logic

A first-order formula is either an atomic formula or built
out of first-order formulas using AND(A), OR (v), NOT
(=), IMPLIES (->), EXISTS (3x), FORALL (VXx).

For example, Even(x) := (dy)(x = 2*y) is a first-order

formula expressing x 1s an even number. Notice 2*y and x
are terms, so X = 2*y is an atomic formula, so (dy)(x =

2*y) 1s a formula.

In the above, the variable x would be called a free variable
and the variable y 1s called bound.

Notice depending on the value of x, Even(x) may be either
true or false.

Typically in mathematics, we start with a set of formulas
(axioms) which we think are always true and we see what

others facts we are able to derive from this formulas.
A formula derivable from our axioms is called a theorem.

Rules of Inference

So given a set of true formulas, what are the legal
inferences we can make?

For example, if I know A 1s true, I can infer A v B is true.
Similarly, if I know A(t) holds, I can infer (3y)A(t). Given A-
>B and B-> C, I can infer A->C.

These are examples of valid rules of inference. There 1s a
finite list of inferences I, such that given a list of axioms A
and any statement T that follows from A, we can start from
formulas in A and only apply inferences in I to get new
formulas, and eventually reach the formula T.

A derivation of T from A using I would be called a proof.

A logic programming language is a notational system for
writing logic statements together with specified algorithms
for implementing inference rules.

Horn Clauses

A Horn clause is a statement of the form:

a, ANDa,AND ... a ->b
b 1s called the head of the clause, and the rest of the clause is called
the body.

Horn clauses are particularly simple formulas which are using for
creating a computer language.

A clause of the form ->b is called a fact, and might just be written as
b.

As an example of how Horn clauses might be useful in terms of
expressiveness, consider the following definition of the natural
numbers:

(1) natural(0).
(2) natural(x) -> natural(successor(x)).

To prove natural(successor(successor(0))). We can use axiom (1)
together with axiom (2) twice and modus ponens.

Resolution and Unification

e There are two aspects to derivations involving
Horn clauses and these will provide the basic
algorithmic component of Prolog: resolution and
unification.

* Given two Horn clauses:
A<-A, ... A
B<-B,,...,B
where B, = A, resolution 1s the rule of inference:
B<-B,...B. ,A,....,A,B B

i+1> --+ Pn-

e Unification was the process of pattern matching
we used on the last slide to match
natural(successor(x)) and

natural(successor(successor(0))) by setting x
=successor(x).

n

Prolog

* We started going over my Prolog tutorial:

— http://www .cs.sjsu.edu/faculty/pollett/15.1.991/
prolog.html

