
More Scheme

CS152
Chris Pollett
Nov. 3, 2008.

Outline

• More Scheme

Introduction
• Last day, we were talking about pure functional

programming languages, one of the main features
of which is that such a language does not have
variables.

• We talked about a function being referentially
transparent if its values only depends on its
arguments; I.e., no static variables.

• Such pure languages are easier to prove
correctness properties of their programs.

• We said although no language is strictly pure
some languages like Scheme and ML are closer to
purely functional.

• We introduced Scheme, talked about expression,
evaluation, if, and cond.

Boolean Operations
• There are a number of functions which can be used to

compare objects in Scheme.
• For numbers, we have already seen <, >, <=, >=. For

example, (< 2 3) returns #t
• For equality one have eq?, eqv?, and equal? The first is

somewhat implementation dependent, the second checks if
the two items are equivalent (essentially refer to the same
value), the last does a deep comparison.

• Notice the convention that "?" is used after functions
which might return a true or false.

• Other, boolean functions: null?, string=?, number?, etc.
• Scheme also has the Boolean operators and, or, not.

let and begin
• Scheme has function called let which allows values to be

given temporary names within an expression:
(let ((a 2) (b 3)) (+ a b)) ; evaluates to 5

• The first expression within let is called a binding list.
• You could view let as short for

((lambda (a b) (+ a b)) 2 3)
• You could have multiple expressions not just (+ a b) at the

end of a let (you can also do this with lambda)
• If you don't need to do any assignments, another useful

Scheme operation which essentially does this is begin:
(begin l1 l2 l3 …)
Executes l1 followed by l2 followed l3. You could view this as short

for:
((lambda () l1 l2 l3 …))

Adding things to the Scheme
Environment

• The define function can be used to add new associations
between names and values in Scheme:
(define a 2)
(define emptylist '())
(define (sum lo hi) ; could write: sum (lambda (lo hi) …
 (if (= lo hi)
 lo
 (+ lo (sum (+ lo 1) hi))))

• Once something has been defined, you can see its value are
scheme prompt

 (sum 3 5)
12

Data Structures in Scheme
• The basic data structure in Scheme is the list.
• List can be nested to create more complicated structures.
• For instance, ((a b) (c d) e).
• There are three built-in functions to manipulate lists: car,

cdr, cons -- the names correspond to assembly instructions
on a now defunct IBM mainframe.
– (car '(1 2 3)) ; returns 1 - the head of the list
– (cdr '(1 2 3)) ; returns (2 3) the tail of the list
– (cons 0 '(1 2 3)) ; adds to the front of the list (0 1 2 3 4)

• What is (cons 'a 'b) ? Notice 'b is not a list. It is a so-called
dotted pair: (a . b).

• In general, a list is short for the coresponding nesting of
dotted pair that begins with '(). So (b) is (b . '())

• The function list can be used to make a list out of a
collection of objects (list 'a 'b 'c) makes the list (a b c).

Doing Things Recursively
• One can use recursion to do an operation on all the

elements of a list or data structures derived from it:
(define (my-reverse-list L)
 (if (null? L) '()
 (append (my-reverse-list (cdr L)) (list car L))))

• Recursion is often viewed as wasteful of space and time
because it requires storage on the stack, and the push and
popping from the stack takes times.

• Modern translators can recognize certain kinds of
recursions as being amenable for conversion to loops:
those where the last operation in the procedure is a call to
itself. (a tail recursive procedure).

Doing Things Recursively 2

• One trick for making a procedure tail recursive is
make use of an auxiliary function with an extra
accumulating parameter:

(define (reverse-aux L list-so-far)
 (if (null? L) list-so-far
 (reverse-aux (cdr L) (cons (car L) list-

so-far)))) ; tail-recursive
(define (my-reverse L) (reverse-aux L '()))

Higher Order Functions
• We said that functional programming languages

allow us to treat functions as first class objects.
• We’ve already seen one way that Scheme allows

this: We can talk about functions independent of
assigning them a name using lambda:

((lambda (x) (* x x)) 3) ; gives 9
• We can also write functions that take functions as

arguments:
(define compose (lambda (f g) (lambda (x) (g (f x)))))

• There are some built in functions of this kind. For
instance, (map f L) applies the function f to each
element of L.

Notions of static in Scheme
• Consider
(define make-new-balance (lambda (balance)
 (lambda (amount)
 (if (< balance amount) "insufficient funds"
 (begin
 (set! balance (- balance amount))
 balance)))))
(define atm (make-new-balance 100))
(atm 20)
; returns 80
• You can think of set! as altering the list associated with the

function returned by make-new-balance changing the value
stored for balance within it. I.e., balance, is acting as a
static variable and this is achieved using higher-order
functions.

Message Passing
• Since we can now do static variables in Scheme,

we can create classes using the message passing
techniques we have talked about before.

• A good example of doing this, can be found in
some of my example code for Hw1 the last time I
taught AI:

http://www.cs.sjsu.edu/faculty/pollett/156.1.04s/inde
x.html?Hw1.shtml

