

Language Translation, History.

CS152.

Chris Pollett.

Sep. 3, 2008.

Outline.

• Language Definition, Translation.
• History of Programming Languages.

Language Definition.

•	 There are several different ways one can define a programming

language. One way is to write a compiler and say that the language is
specified by how the compiler outputs your code. This is called
creating a reference implementation. Some languages like PHP, Perl
only do this.

•	 Another way to create a standard specification for the language is some
English (or other human language) reference manual. To do this one
needs to specify two things:
–	 Language Syntax: this describes what strings constitute programs in the

given languages. A spec for the syntax might be to give a context free
grammar. Such a grammar might have rules like:

<if-statement> ::== if(<expression>) <statement> [else <statement>] .
String like “if’ and ‘else’ in the above are called tokens. Their description form

the lexical structure of the language.
–	 Language Semantics: a specification of this must describe how a given

syntactic structure should be implemented on the computer. This can be
English, or using one of a few common formal semantics such as:
operational semantics, denotational semantics, or axiomatic
semantics.

Language Translation.

•	 To be useful a programming language needs to have a

translator.
•	 This is a program which either translates instances of the

language into machine code, which can then be executes
(compiler); or which takes instances of the languages and
executes them as it read them (interpreter).

•	 You can also compile to an intermediate representation
(for instance, a byte code compiler) and then have an
interpreter for this representation (pseudointerpreters).
Pascal, Java, Perl, PHP, Prolog, etc do this.

•	 A language is typically defined differently from the results
of a particular translator. For instance, gcc does not
completely implement the C99 spec.

More on Translation.

• Translation is typically done by using a lexical analyzer

which then sends tokens to a syntax analyzer (parser).

•	 One might also have a preprocessor that does an initial

pass over the file to get it into a form suitable for the
translator.

•	 A runtime environment for program data must also be
generated (compiler) /maintained (interpreter).

•	 One might have several passes (I.e., readings of the file to
compile) over the program to perform an entire
compilation. You might also select for certain
optimizations to be carried out during a given pass.

•	 Translation usually supports an error reporting/ debugging
mechanism.

•	 The translator might also make use of pragmas in the code
to control compiler options as compilation is done.

History of Programming

Languages.

My intention is to give a flavor of when various language
constructs appeared rather than be complete.

•	 Pre-history.
–	 Many ancient cultures used natural languages to specify algorithms for

computing things like volumes, areas, etc. Once committed to paper such
an algorithm could be read and executed on another human.

–	 Hero of Alexander (1st century AD) created automata for theaters. The
controls for these automata could be “programmed” by winding ropes
around their drive mechanisms in different ways.

–	 In the 1800s, Joseph Marie Jacquard used punch cards to program how
looms would weave things like carpets and tapestries.

–	 This influenced Charles Babbage who also in the 1800s worked on very
early mechanical computers such as the Analytical Engine which were
never fully completed.

First Real Programming

Languages.

•	 FORTRAN - short for Formula Translation. Developed at
IBM by John Backus 1954-1957. It was a procedural
language. It introduced variables, arrays, loops, if
statements. The goal was to produce code that was very
close to human coded machine code in speed. Compilers
for it are still among the fastest. Fortran 77 did not have a
runtime stack (Fortran 90 did). So when you called a
function or a subroutine, the values of the call parameters
and local variables were what they were from the previous
call.

Other Procedural languages of the Late 1950’s.

•	 Other procedural languages which came out a few years later were:
–	 COBOL (1959-1960) -- designed for businesses. So code used lots of

English tokens (an idea pioneered by Grace Hopper, US Navy) to try to
make it readable by non-programmers. Language was first to have a way
for programmers to define new data types via records. It also had a way
(pictures) of creating sophisticated formatted output. Similar, formatted
output can be seen in Perl.

–	 Algol (1958-1960) -- first language to have its syntax specified using
Backus-Naur form (BNF). It also allowed free format for the code rather
than a fixed format based on columns on a punch card like Fortran and
Cobol. It had a runtime stack supported recursion, introduced begin-end
blocks, etc. It influenced many later languages like Pascal, C, Ada.

LISP.

•	 Specified in a paper by John McCarthy in 1958.
•	 An interpreter appeared shortly thereafter. The

first compiler appeared in 1962.
•	 It was the first functional programming language.

•	 It was untyped and based on a generalized notion

of list.
•	 It supported recursion.
•	 It was the first language to have garbage collection.

•	 One of the most popular languages in AI research.

Languages of 1960s.

•	 PL/I (1963-1964) Developed at IBM for the IBM 360. It

supported concurrency and exception handling.
•	 SNOBOL (1962-1967) R. Griswald, Bells Labs. First

language to support a wide set of string manipulation
features. Ideas later incorporated in languages like sed,
awk, Perl.

•	 Simula 67 (1965-1967) Developed by Nyqaard and Dahl at
the Norwegian Computing Center. Introduced the notion of
a class. First object-oriented language.

•	 BASIC (1964). Kenemy and Kurtz, Dartmouth College.
Perhaps, the first language geared toward teaching
programming.

Languages of the 1970s.

•	 Pascal - (1971). Developed as an educational language by N. Wirth in
reaction to how complicated Algol68 was. It was used to program the
OS of early Mac computers.

•	 C - (1972). Developed by Denis Ritchie Bell Labs. Used to write the
Unix OS. Tried to be convenient for programmers to write (avoiding
unnecessary syntax) and to be close to the underlying machine. (mid-
level language)

•	 CLU - (1974-1977). OO language developed by Barbara Liskov, MIT.
Introduced the notion of iterator to OO languages. Also, had very
good exception handling.

•	 Prolog - (1972). developed in Marseille, France by A. Colmerauer.
Most popular logic programming language. Used in AI, web
intelligence, etc. Influenced Datalog and Query By Example database
access.

Languages of the 1980s.

•	 Ada - developed by the Department of Defence. Introduced the notions
of packages for ADTs and tasks for concurrency. My uncle
(Whittaker) involved in its design.

•	 Smalltalk - (1980). OO language developed at Xerox Parc. Used in first
GUI OS. Many OO design patterns were first described for this
langauge.

•	 Scheme - (1975-1978). simplified version of LISP developed at MIT
for initially educational purposes. It became with the publication of
Abelson Sussman 1985.

•	 ML - (1978-). Milnor, at Edinburgh. Typed functional programming
language initially used for theorem proving (HOL).

•	 C++ - (1983). OO language developed by Bjarne Stroustrup, AT&T.
First widely popular OO language

•	 Perl - general purpose, scripting, string manipulation language
developed by Larry Wall. One of the First, language used for CGI
programming.

Languages of the 1990s to Present.

•	 Java - (1994-1995) .developed by Gosling at Sun.
Simplified (compared to C++) C-like OO language with a
large initial library of classes. Popularized byte-code
compilers. Used both client-side and server-side for web
development. Initially, designed for embedded devices.

•	 Javascript - (1994-1995). developed by Eich at Netscape.
Object-based. Introduced concept of Document Object
Model.

•	 PHP - server-side templating language. Developed by
Rasmus Lerdoff. One of the most popular web
programming languages.

•	 Many other recent web languages Python, Ruby, etc. Also
lots of document languages based on XML.

