
More Procedures

CS152
Chris Pollett
Dec. 1, 2008.

Outline

• Procedure Environments, Activations, and
Allocation

• Dynamic Memory Management
• Exception Handling

Introduction
• Last Wednesday we were talking about activation

records and environments.
• We distinguished between the defining

environment (the closure) of a record B versus its
calling environment.

• We then looked at different parameter passing
mechanisms: pass by value, pass by reference,
pass by value result, and pass by name.

• Today, we are going to look at the structure
activation records in more detail depending on the
run-time environment of the language in question.

Fully Static Environment
• In Fortran 77 all memory allocation can be performed at

load time.
• Thereafter, the locations of all variables are fixed for the

duration of program execution.
• Functions and procedure definitions cannot be nested and

recursion is not allowed. Thus, everything can be statically
allocated.

• Each procedure or function has a fixed activation record,
which contains space for the local variables and
parameters, and possibly the return address for proper
return from calls.

• Global variables are defined by COMMON statements, and
are determined by pointers to a common area.

Fully Static Environment
Illustrated.

Common Area

Activation record
of

main program
Activation record

of
First subroutine

….

Basic memory layout

Local variables

Parameters

Temporary space

Memory layout of

an activation record

Return Address

Stack-based Runtime
Environments

• For block-structured languages like C, a procedure may be called again
before its previous activation has exited. (So we can do recursion.)

• Thus, a new activation record (stack frame) must be created on each
procedure entry.

• This is usually done using a stack. The exact format of a stack entry is
implementation specific, we mentioned a different version earlier in
this semester than the book uses. However, the book's version is useful
for when we consider slightly more complicated languages like Ada.

• Each activation record on the stack, contains much the same
information as in the Fortran case: local variables, parameters, return
address, temporaries.

• There is an environment pointer which points to the start of the
current activation record on the stack.

• Each activation record also has a pointer called a control link, which
points to the start of the activation record that control will return to
after the given procedure ends.

• The location of variables in a record is given as an offset from the start
of the record (I.e., where the environment pointer point to).

Runtimes with Nested
Procedures

• Some block-structured languages like Ada and Pascal, allow you to
define one procedure inside of another.

• If P2 is defined within P1 it might make use of variables within P1 in
its definition.

• In order to be able to find these variables' values, in addition to a
control link, there must also be an access link, which point to the
activation record in which the function was defined (the defining
environment).

• Since you can nest P3 inside P2 inside P1, you might need to follow
several such links (access chaining) to actually look up a variable.

• Ada does not allow the use of P1 to create a P2 that persists after P1 is
done. So we can't create the make-balance closure example we had in
Scheme.

• To implement that we need to move away from using a stack and
instead to allocate activation records in a more heap like way and use
garbage collection.

Dynamic Memory Management
• So what methods can we use to determine when an

activation is no longer needed in a language like Scheme?
• We are allocating on a heap. We keep a free space list. We

coalesce contiguous free blocks, and we might compact the
heap occasionally.

• One way to keep track of who is referencing an activation
is to use a reference count.

• One problem with this is circular references.
• Another technique is to use a mark and sweep approach.

First mark each record reachable from the global
environment. Then iterate and mark each record reachable
from those. Do until no change. Anything not referenced at
end can be garbage collected.

More Garbage Collection
• One improvement to this is called stop and copy:

– Split heap memory into two halves; only use one halve at a time.
– To garbage collect have a mark phase as in mark and sweep, but

copy marked items to unused half.
– Then make that half active and garbage collect the whole

previously used half.
• Another is called generational garbage collection:

– Have several heaps which are garbage collected with
different frequencies.

– If an item is not garbage collected in a high frequency
collected heap a couple times, it is moved to a more
slowly garbage collected heap.

