
Basic Semantics.

CS152.

Chris Pollett.

Oct. 1, 2008.

Outline.

•	 Attributes, Binding, and Semantic
Functions.

•	 Declarations, Blocks, and Scope.

Semantics.

•	 Recall a programming language is supposed to

give us a way to write programs in a human
readable and computer understandable format.

•	 So far we figured out how to specify the syntax of
programming languages which are human
understandable.

•	 We also have figured out how to write programs
which can determine if an input file is a valid
program in programming language.

•	 We next need to describe how we can go from
parsing to having machine code which could
execute on some computer.

•	 That is the subject of semantics.

Attributes.
•	 Programming languages use names/identifiers to refer to

various languages entities or constructs.
•	 To give meaning to these names it useful to use the

concept of location of where the name refers to is stored
and to use the concept of value for what is stored there.

•	 The meaning of a name is determined by the properties
(aka attributes) associated with the name.

•	 For example, the declaration:
const int n=5;
Makes n into an inter constant with value 5. So the meaning of n is a

name for a datatype attribute “integer constant” and a value
attribute 5.

•	 The function declaration: double f(int n) { … }.
Associates the attribute function to the name f together with (a) the

number, names, and data types of its parameters, (b) the datatype
of the return value, and (c) the body of code to be executed.

Binding.

•	 The process of associating an attribute to a name is called

binding.
• Binding can occur in other places then in declarations. For

example, x = 5 binds the value attribute 5 to the name x.

•	 One can classify attributes according to when in the

translation/execution process it is computed and bound to a
name. This is called binding time.

•	 Static binding occurs prior to execution. An example of
this might be a declaration like: int x; //The binding of the
datatype attribute to the name x occurs in the compiler.

•	 Dynamic binding occurs during execution. For example, a
statement like x = 2; binds x to the value 2 at that place
during execution. A declaration like y = new int; in C++
binds the value of the pointer y to a new storage location as
that point in the code execution.

The Basic Semantic Function.

•	 Bindings must be maintained by the translator so that

appropriate meanings are given to names during translation
and execution.

•	 We can think of the data structure that the translator uses
as a functions that expresses the binding of attributes to
names.

•	 This function which plays a fundamental role in language

semantics is usually called the symbol table.

SymbolTable: Names --> Attributes.

•	 This data structure typically changes as execution
progresses as bindings are added, deleted, or updated.

Semantic Functions in Compilers and

Interpreters.

•	 A compiler typically only can compute static attributes in its symbol
table.

•	 Runtime location and value changes are handled by the compiler
generating code to maintain these values during execution.

•	 The memory allocation for this process is usually considered
separately from the symbol table and is called the environment.

•	 Finally, the bindings of storage locations to values is called the
memory.

•	 So for a compiler we have the three semantic functions:
1.	 SymbolTable: Names --> Static Attributes.
2.	 Environment: Names --> Locations .
3.	 Memory: Locations --> Values .

•	 In an interpreter the symbol table and environment are
combined and both static and dynamic attributes are
computed during execution. The whole biding function is
usually just called the environment.

Declarations
.
•	 Declarations are one of the main ways to create new bindings.
•	 Consider: int x;
•	 The data type of x is explicitly declared. However, the exact location

where x is stored is bound only implicitly during execution and may
depend on where this declaration occurred in the program.

•	 Some languages allow you to even have implicit declarations. For
example, in PHP a variable gets implicitly declared when you first
assign it. $x=6.5; //implicitly creates $x and makes it a double.

•	 Sometimes languages have a distinction between bindings which bind
all potential attributes called definitions versus bindings which bind
only some attributes which are called declarations.

•	 For example, a C prototype void f(int a); is a declaration but not a
definition; whereas, the actual code of f would be its definition.

Blocks.

•	 One language construct which is often associated with

declarations is the block.
•	 A block consists of a sequence of declarations followed by

statements, then surrounded by syntactic markers such as
braces or begin-end pairs.

•	 In C, blocks are called compound statements. They can
appear as the body of a function or can appear anywhere
an ordinary program statement could appear:
void p() {double r,z; … {int x, y; /* nested block/*…}}

•	 In addition to declarations associated with blocks C also
has an external or global set of declarations outside any
compound statement:
int x;

void main() {/* some code*/}
.

More on Blocks.

•	 Declarations that are associated with the specific current

block are called local. Otherwise, the declaration is called
nonlocal.

•	 Algol60 was the first language to associate declarations
with blocks and to support nesting of blocks.

•	 All Algol descendants exhibit this block structure in
various ways.

•	 For example, in Ada a block may be written using begin-

end pairs:

declare x: integer;

y: boolean;
begin

x:= 2;

y:= true;

end;

Other Language Constructs

Supporting Declarations.

•	 All structured data types are defined using local
declarations associated with the type.

•	 For example, in C:
struct A
{ int x; double y;

struct {int* x; char y;} z;

};

•	 Similarly, object-oriented languages such as Java or
Smalltalk use the notion of class as an important source of
declarations.

•	 Declarations can even be collected into larger groupings in
some languages such as packages in Ada or Java;
namespaces in C++; or modules in ML or Haskell.

Scope.

•	 Each binding associated with a declaration has an attribute

that is determined by the position of the binding within the
program and by the language rules for the binding.

•	 The scope of the binding is the region of the program over
which the binding is maintained.

•	 Usually, people refer to the scope of a binding rather than

of a name to avoid confusions with code like:

void p() {int x; …}

void q() {char x;}

•	 For a block structured language one typically has a lexical
scope rule. That is, the scope of binding is limited to the
block in which it appears.

