
More UML, Use-case diagrams,
and CRC cards

CS151
Chris Pollett

Aug. 31, 2005.

Outline

• UML for associations, aggregation,
composition, and dependency

• Sequence Diagrams
• State Diagrams
• Use Cases
• CRC Cards

UML for Associations

• Associations represent general binary
relationships between classes.

• One or both classes typical has a direct or
indirect reference to the other class.

Class1 Class2
Name

role role

Might also indicate
multiplicity

Student Course
Enroll

*

Student Faculty
advisee advisor

1*

More On Multiplicities

• Can be one of
l..u a number between l and u
i a single number (can separate with a comma)
* 0 or more

• For example, 1..* would mean 1 or more.
1,4,5 would mean 1 or 4 or 5.

Navigation

• An association may indicate one of the two classes
can invoke a member of the other class directly or
indirectly.

• For example, a Creature object might have a
method parent() which returns the World it is in.
This in turn might have a method
getGraphicsContext() which return a
GraphicsContext. So Creature might be associated
with GraphicsContext.

Aggregation and Composition

• These are special forms of associations.
• Aggregation is used to represent has-a or part-

whole relationships Ex: Bicycle has a Tire
• Composition is a type of aggregation where the

component only belongs to the particular kind of
whole.

• For example, as Tire’s could be Car or Bicycle
Tire’s they are not an example of a composition.

• It might be that a College can only exist as part of
a University in which case, we’d have an example
of composition.

UML for Aggregation and
Composition

Aggregate

Component

role

role
name

Aggregation

Aggregate

Component

role

role
name

Composition

Department

Student

1
majors

Composition

*

Notice we can leave off
the roles or the name and
we can indicate
multiplicities

UML for a Dependency

• A dependency is a relationship between
entities such that the proper operation of
one entity depends on the presence of the
other entity.

Class1 Class2

Indicates Class1 depends on Class2

Modeling Dynamic Behavior

We’d now like to discuss two ways to model
the behavior of classes and objects as a
software program is running:
– Sequence Diagrams
– State Diagrams

Sequence Diagrams
Consist of set of

vertical columns
of the form:

Obj:CAn object

has focus
of control

for some
period on its
lifeline

Together with different kinds
of arrows between these
columns:

<<create>>

method(param)

Creating an object

Invoking a method

Returning from a
method

Example Sequence Diagram
client:

pj:PrintJob
<<create>>

submit(myDoc)

:PrinterQueue

add(this)
assignJobNo()

print()

State Diagrams

• Depict the flow of control in a software system using the
concepts of states and transitions between states.

• Generalize finite state machines from CS154.

A state is a condition or situation an object might be in at
given time.

A transition is a relationship between two states indicating
the object started in the first state, performs some action,
and ends up in the second state. A transition may have a
triggering event. In addition, transitions may have an
action that occurs with them.

An object begins in an initial state goes through some
sequence of intermediate states and ends in a final state.

UML for State Diagrams
State a state

a initial
state

a final
state

Source State

Destination State

a transition events[guard]/action

Nested State Diagrams

• States can be nested to make composite
states:

S0 S1

S11

S12

 S2
S21 S22

S21a S22a

(a) composite sequential
states

(b) composite concurrent
states

Example State Diagram

Modeling with Use Cases
• Use cases and use case diagrams are used to model the

requirements of a system to be developed.
• Behavior of the system is described in terms of actors.
• Use cases describe what the system does in terms of these

actors trying to use the system, and describe how the
system does it.

• Users of use cases come up with scenarios that describe in
a paragraph a possible flow of events

• Alternatively, one can have two columns: one with actor
actions and the other with system responses.

Use Case Diagrams
actor

Case a use case

Can put actors into a
hierarchy

User

Dentist
DoctorLawyer

Record management
system

check
customer

validate user

User

<<include>>

In addition, can say a use case
<<include>> or <<extend>> other
use cases.

CRC Cards

• Class Responsibility and Collaborator Cards.
(Beck Cunningham OOPSLA ‘89)

• These are another modeling technique like UML
modeling, and use case modeling.

• The idea is to work in small teams (5-6) consisting
of developers, domain experts, and OO
facilitators.

• These teams develop create a sequence of cue
cards. Each card contains on it the name of a class,
its superclass, its responsibilities, and its
collaborators.

More CRC Cards

• Design is broken into sessions where participants
try to identify all the nouns and verbs associated
with a problems.

• Nouns become the classes and verbs become
responsibilities

• Superclasses and collaborators are defined as they
become obvious. For instance, if one has several
cards with similar responsibilities one defines a
superclass with these responsibilities.
Collaborators will be classes which are likely to
be navigatable to from a given class.

