Exceptions

CS151
Chris Pollett
Sept. 26, 2005.



Outline

What 1s an exception
Sources of Exceptions
Hierarchy of Exceptions

Exception Syntax



What 1s an Exception?

* Exceptions are unexpected conditions in
programs.

e Java provides a mechanism to facilitate
recovery from such unexpected collisions.

e This mechanism disrupts the normal flow of
execution and goes to a block of code
specifically for handling the exception.



Sources of Exceptions

* When the normal flow of execution i1s

interrupted because of an exception, we say
an exception has been thrown.

* Exceptions originate from two sources:

— At run-time. This might happen for instance it
one tries to dereference a null pointer.

— In a Java program, when an unexpected
condition occurs, an exception can be explicitly
thrown with the throw statement.



Hierarchy of Exceptions

Exceptions are modeled as objects of different exception classes.
All error and exceptions are subclasses of Throwable.

Error is a subclass of Throwable for throwing serious of fatal
problems with a program. Errors are thrown by the JVM and are not
typically handled by regular programs. Some subclasses include
AssertionError and OutOfMemoryError.

Exception is a subclass of Throwable for problems which might be
thrown by a typical program. All-user defined exceptions should be a
subclass of Exception. Some notable subclasses are IOException,
CloneNotSupportedException, and InterruptedException

RuntimeException is a subclass of Exception which are cause by
illegal operation and are thrown by the JVM. Some examples are:
ArithmeticException, ClassCastException,
IndexOutOfBoundsException, Illegal ArgumentException,
NullPointerException, and NumberFormatException.



Exception Syntax

To throw an exception the command is:
throw ExceptionName;
For example: throw new MyException();

Any exceptions not caught within a method, but which might be
thrown by that method must be listed in the method declaration. For
example,

public void myMethod() throws IOException;
To handle exception use try-catch block:
try{/* code which might cause exception*/}
catch(MyException_1 el){/* what to do for this type of exception*/}

catch(MyException_n en){/* what to do for this type of exception*/}
finally{/*what to do in all cases including no exception */}

One common thing to do when an exception occurs to to print the list
of stack calls: e.printStackTrace();



Example

public class PurchaseOrder

{
public double calculateltemTotal(double unitPrice, int quantity)
{
if(quantity < 0) throw new Illegal ArgumentException(“negative
quantity’);//exception case
//mormal case
return unitPrice*quantity;
h
// rest of class
h

// Code which might use above:

PurchaseOrder anOrder;

try{double total= anOrder.calculateItemTotal(...);

} catch(Illegal ArgumentException e){/* handle exception*/}



